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4.1 General Introduction 
Terpenes are the most diverse class of natural products with some 55,000 known compounds, 

including monoterpenes (C10), sesquiterpenes (C15), and diterpenes (C20) representing nearly 400 distinct 

structural families.1-6 These ubiquitous natural products are present almost everywhere in nature and have 

been isolated from both terrestrial and marine plants, liverworts, and fungi.7-11 Most of the terpenoids 

originate from plants, where these compounds are classified either as primary metabolites necessary for 

cellular function and development, or as secondary metabolites which are not involved in any growth or 

maintenance processes. For much of the last century terpenes were thought to be products of detoxification or 

overflow metabolism in plants.6 However, since the 1970s, many terpenes have been shown to have 

significant ecological roles in antagonistic or mutualistic interactions.12 As primary metabolites they serve 

many biological functions such as hormones (steroids, gibberellins),13 structural components of membranes 

(phytosterols), as electron and proton scavenger in the respiratory chain (ubiquinones), as carotenoids in 

photosynthesis and as chromophores in the visual process (all-trans retinal) (Figure 1).12-17 
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Figure 1: Examples of terpenes with established functions in nature. Very few terpenes have been investigated from a 
functional perspective; some of compounds with known biological relevance are shown above. Their functions range 
from hormones (steroids, gibberellins), structural components of membranes (phytosterols), as an electron and proton 
scavenger in the respiratory chain (ubiquinones) and as chromophores (all-trans retinal). 

Majority of the terpenes are still considered to be secondary metabolites, which are used by plants in 

direct defense and protection mechanisms, such as high concentrations of terpenes in cotton leaves and in the 

xylem of conifers act as feeding deterrents, toxins or as a mechanical barrier.12,18,19 Apart from direct defense 

they are also involved in indirect defense against herbivores through recruitment of predators, for example 

emission of volatile organic compounds that may attract herbivore’s enemies, such as predators or 

parasitoids.20 Moreover, volatile terpenes serve as attractants for pollinators,14 feeding or oviposition 

deterrents to a large variety of insects15 as well as toxins12. Furthermore, terpenes have always been 



 

 

historically attractive for commercial purposes due to their applications in flavor, fragrance, agrochemical 

and pharmaceutical industry.21,22  

4.1.1 Discovery and Milestones 
Historically terpenes have found various important applications in different cultures. Due to their 

ubiquitous presence in plant essential oils, their applications have been known since ancient Egyptian times. 

In Europe, camphor was introduced by the Arabs around the 11th century and the structure of camphor was 

established by Bredt in 1893.1,22 The structure of pinene was found by Wagner in 1894 and -Carotene was 

isolated in 1837 by Wackenrodder from carrots, and its structure determined in 1907 by Willstätter.1 In 1891 

the characteristic odor of freshly plowed soil was first reported to be due to actinomycetes and identified by 

M.N. Gerber in 1965 as a degraded sesquiterpene alcohol, geosmin (meaning earth odor) (Figure 1).23 Since 

1945 there has been massive progress in terpene research due to the advent of chromatographic and 

spectrometric techniques. The discovery of the isoprene rule was initiated by Ruzicka.24-26 in 1953 and 

mevalonic acid as the biosynthetic precursor of cholesterol27 in 1956 and later, its incorporation into a 

number of terpenoids were major milestones in scientific progress regarding terpenoids. More recently in 

1996, Rohmer and coworkers showed that 1-deoxyxylulose-5-phosphate (DXP) as the first intermediate in 

DXP pathway.28,29 These ground breaking investigations have been awarded the Nobel Prize in physiology 

(Lynen and Bloch in 1964) and in chemistry (Cornforth in 1975). Thereafter, an increasing number of 

terpenoids have been shown to have important biological activities and associated applications.30 

4.1.2 Commercial Applications of Terpenes 

Human societies have been quite adept at discovering applications of terpenes for commercial 

purposes.31 The diverse array of terpenoid structures and functions had provoked great interest in their 

commercial use since ancient times. Pharmaceutical and food industries have been the most effective in 

realizing the potential of terpenes as medicines and flavor enhancers (Figure 2). Perhaps the most widely 

known terpene is rubber (a polyterpene), which has been extensively used by humans.32 Other commercially 

important terpenes are limonene (cosmetics), carvone (aroma), hecogenin (detergent), and digitoxigenin 

(medicine). Agriculture has also shown increasing interest in terpenes with their antimicrobial activities, as a 

potential to replace antibiotics in livestock.16 They also act as natural insecticides and can be of use as 

protective substances in storing agriculture products.16,33 

 



 

 

 

Figure 2: Representative examples of terpenoids of commercial significance. The diverse array of terpenoid 
structures and functions has found immense commercial applications. Terpenoids have been found to be useful in the 
prevention and therapy of several diseases (artemisinin against malaria, coumarins, including calanolide A from and 
shikonin against HIV and terpenoid indole alkaloids, vincristine and vinblastine from against cancer), and as flavor and 
fragrance ingredients (citronellol and santalol) and various agriculture applications. 

Terpenes are precursors to many well-known essential compounds in the human body such as 

squalenes, coenzyme Q10 and cholesterol. Polyisoprenoid alcohols called dolichols are necessary for the 

biosynthesis of biologically important glycoproteins. Sex hormones are one of the rapidly metabolized 

steroids in the human body all from a common precursor, cholesterol. The most notable ones are female sex 

hormones oestradiol and progesterone, whereas testosterone and androst-5-en-3 -ol-17-one are male sex 

hormones. Synthetic oestrogens and progestins such as mestranol and norethindrone are the basis of the 

contraceptive pill; they act by disrupting the delicate balance of progesterone during the menstrual cycle. 

Cortisone (Figure 2) and 4-hydroxyandrostenedione are steroid hormones that have a broad spectrum of 

activity other than the sex hormones. Vitamin D leads the group of sterol compounds, necessary for the 

metabolism of calcium and phosphorus in humans.16,34,35 

Terpenoids have been found to be useful in the prevention and therapy of several diseases, including 

cancer, and also to have antimicrobial, antifungal, antiparasitic, antiviral, anti-allergenic, antispasmodic, anti-

inflammatory, and immunomodulatory properties.33,36 A wide range of terpenoids (Figure 2) have 

demonstrated pharmaceutical activity against diseases, e.g. artemisinin from Artemisia annua against malaria, 

coumarins, including calanolide A from Calophyllum lanigerum and shikonin against HIV37 and taxanes, 



 

 

paclitaxel like compound from Taxus spp., and terpenoid indole alkaloids (TIAs), vincristine and vinblastine 

from Catharanthus roseus against cancer.38-40 The commercial importance of essential oils has been well 

established in flavor and fragrance industry. Today such oils and resins also form the basis of a wide range of 

taste and odor compounds such as menthol, oil of lavender (linalool), oil of lemongrass (citral), oil of 

sandalwood (santalols), oil of patchouli (patchouli alcohol), scent of roses (geraniol), and citronellol.32,41 In 

addition to their use in the fragrance and flavor industry, terpenes today are used for rubber production and as 

synthetic intermediates or as a solvent for paints and resins.8,42,43 There are diverse classes of terpenes waiting 

to be explored for potential commercial applications. 

4.2 Terpene Diversity 

 The vast diversity of terpenoid structures is due to efficient mechanism of regioselective and 

stereospecific cyclization of the acyclic substrates like geranyl diphosphate (GDP, C10), farnesyl diphosphate 

(FDP, C15) and geranylgeranyl diphosphate (GGDP, C20) catalyzed by enzymes known as terpene 

synthases.1,30,44,45 The resulting blends of terpenes have classically been identified as natural products and 

often referred to as secondary metabolites that do not seem to participate in essential cellular metabolism. 

Over the last century they were thought to be metabolic wastes, however this classification does not do 

justice to their ecological and natural significance. Recent advances in genetic and molecular studies have 

helped us decipher the natural and ecological roles of terpenes.46,47 This led to major advances in our 

knowledge about functions of these terpene mixtures within and among individual organisms.4 

4.2.1 Ecological Significance: Defense with Mixtures 

During the co-evolution of plants and insects, they have developed variety of biosynthetic 

mechanisms to deal with a wide range of enemies. One of the advantages of such diversity is that apart from 

concurrent defense against numerous predators, they also increase the probability of individuals in a 

population having unique compositions of terpenes for defense.6 Possession of such novel blends provides 

individuals better chance of survival in comparison with population48 and other chemical mixtures have 

already been known to impede evolution of resistance in the adversary.49 

There is also significant advantage of terpene mixtures as defense tool as they can have more 

deterrence or toxicity value than similar amounts of a single component.45,50 Such synergistic capabilities are 

due to the ability of one component to increase defensive capabilities of others by inhibiting the 

detoxification in evolved adversaries.51,52 Alternatively, these mixtures with different physical properties also 

possess significant advantage of speed of movement over single compounds. This advantage may be in terms 

  
 



 

 

of rapid movement to the site of attack or in terms of longer duration of persistence of defensive action by 

terpenes. One such example can be found in the defense of conifer resins against herbivory attack using both 

monoterpene olefins and diterpene acids (Figure 3). The more volatile monoterpenes act as a solvent enabling 

fast deployment of less volatile and feeding deterrent diterpenes from the resin ducts to the site of attack.53 

The evaporation of volatile monoterpenes is also reduced by the presence of less volatile diterpenes.54  

 

Figure 3: Plant Defense with Terpene Mixtures. The resin of conifers contains two classes of terpenes: monoterpene 
olefins and diterpene acids. On attack, the more volatile monoterpenes act as solvents enabling a rapid flow of the less 
volatile diterpene acids. The diterpene acids are toxins and feeding deterrents to herbivores, and they also polymerizing 
agents that seals the wound. Adapted with permission from Gershenzon et al.6 

Apart from synergistic capabilities, there might also exist “contingency” effects of these complex 

blends. This term was originally coined for secondary metabolites from Streptomyces spp. that do not act 

synergistically but are produced independently by organisms to act on a single target in different ways. These 

contingency properties have also been shown for a group of sesquiterpenes from the plant Landolphia dulcis 

which have similar physical and chemical properties to breach the enemies’ biological barriers.55 

4.2.2 Communication using terpene diversity 

For immobile organisms like plants, terpenes serve not only as important defense mechanism but also 

as signal for mutually beneficial interactions among species. Due to their low molecular weight and high 

vapor pressure, these blends of lipophilic monoterpenes and sesquiterpenes act as ideal long distance 

communication signal.6 The added advantage of chemodiversity is the communication with higher specificity 

and more information. It is a well-known fact that major components of herbivory-induced chemicals from 

foliage are terpenes.56-58 Interestingly, it is not only feeding but also much less invasive events such as egg-



 

 

laying that can induce emission of terpenoid mixtures that serve as signals for specific parasites. For 

example, in case of the pine sawfly (Diprion pini), when it lays its eggs on pine twigs, the terpene volatiles 

attract a wasp that parasitizes the sawfly eggs.15 Even though the major compound in the active mixture was 

found to be (E)- -farnesene,59 but devoid of other terpenoids in the blend the activity was absent.60 Thus, 

terpene blends offer better cues that are more specific and informative in nature than single compounds.  

Apart from beneficial interactions, sometimes these volatiles can also be picked up by insects or 

parasitic plants to locate their hosts. A blend of monoterpenes from nearby tomato plants are used by 

seedlings of the parasitic plant dodder (Cuscuta pentagona) as growth cues,61 whereas strigolactones are used 

by Striga spp. and Orobanche spp., as germination stimulants for promoting mycorrhizal associations in the 

soil.62 A blend of volatiles rich in terpenes from lima bean leaves also serves to stimulate plant signaling and 

their release leads to indirect defense by attracting the enemy of herbivores.63 There are also some examples 

of terpene blends acting as aerial cues by herbivore attacked neighbors to ramp up their own plant defense 

machinery in anticipation of attack.64-66 Overall, these examples demonstrate the importance of terpene 

blends in chemical communication between multitudes of ecological interactions. 

4.3 Terpenoid Biosynthesis: the acyclic substrates 

4.3.1 The initial C5 precursors 

The early interest in the biochemistry of terpene biosynthesis was largely driven by the desire to 

understand cholesterol formation. Terpene biosynthesis in nature can be divided into three phases. The vast 

diversity produced by isoprenoid biosynthetic pathways is essentially derived from two five carbon 

compounds, isopentenyl diphosphate (IDP) and its allylic isomer dimethylallyl disphosphate (DMADP). The 

formation of IDP and DMADP via the mevalonate (MVA) or methylerythritol (MEP) pathway marks the first 

stage.30,44 

For a long time, the classic mevalonate pathway (MVA pathway) was considered to be the sole source 

of all the C5 precursors. Discovery of the MVA pathway was initiated in 1939 by Leopold Ruzicka who 

suggested isoprene unit as an universal building block for the biosynthesis of all terpenoids.24 Later in 1950’s 

the biosynthesis of IDP was elucidated mainly by Feodor Lynen, Konrad Bloch, John Cornforth and George 

Popjak.25,67-70 The MVA pathway (Figure 4) starts with two consecutive condensations of three acetyl-CoA 

molecules generates 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is further converted to mevalonic 

acid in a NADPH dependent process. Mevalonic acid is then further converted to 5-pyrophosphomevalonate 



 

 

via consecutive ATP dependent phosphorylation. Then further fragmentation reaction leads to the formation 

of IDP and associated inorganic phosphate and CO2.71 

 

Figure 4: Biosynthesis of the active isoprene units IDP and DMADP via MVA (blue) and MEP pathway (red). 
Enzymes involved: a) acetoacetyl-CoA-thiolase (b) 3-hydroxy-3-methylglutaryl-CoA-synthase (c) HMG-CoA-reductase 
(d) mevalonate kinase (e) phosphomevalonate kinase (f) phosphomevalonate decarboxylase (g) isopentenyldiphosphate-
2,3-isomerase (h) 1-desoxy-D-xylose-5-phosphate-synthase (i) 1-desoxy-D-xylose-5-phosphate-reductoisomerase (j) 
diphosphocytidyl-2C-methyl-D-erythritol-synthase (k) diphosphocytidyl-2-Cmethyl-D-erythritol kinase (l) 2C-methyl-D-
erythritol-2,4-cyclodiphosphate synthase (m) 1-hydroxy-2-methylbutenyl-4-diphosphate-reductase. 

In 1996, some inexplicable results of feeding experiments and inhibitor studies led to the discovery of 

the alternative methylerythritol pathway (MEP pathway) by Rohmer and co-workers.28 Interestingly, only the 

MVA pathway is present in animals, fungi, yeast and archaebacteria as a source of C5 precursors. However, 

various algae, plants and bacteria are known to utilize both biosynthetic pathways.72,73 In contrast to the 

mevalonate pathway, the MEP pathway produces both IDP and DMADP starting from glyceraldehyde-3-

phosphate and pyruvate to form l-deoxy-D-xylulose-5-phosphate (DXP). Formation of 2C-methyl-D-

erythritol 4-phosphate (MEP) via a NADPH dependent reaction from DXP is followed by enzymatic 

conversion to a cyclic diphosphate. The cyclic diphosphate is then transformed into 1-hydroxy-2-methyl-2-

buten-4-yl diphosphate (HDMADP). Unlike the MVA pathway which leads only to the formation of IDP, in 

case of MEP pathway, both IDP and DMADP are produced in the final step.8 



 

 

4.3.2 Biosynthesis of acyclic precursors of the terpene family 

In the second phase, the two isomeric C5 diphosphates form longer substrates via head-to-tail 

linkages by prenyl transferases.74,75 In the first step, the cleavage of the diphosphate anions of DMADP takes 

place to afford an allyl cation (head), which undergoes electrophilic addition to the double bond (tail) of IDP 

(Figure 5). Further elimination of a proton yields (2E)-geranyl diphosphate (GDP), the direct precursor of the 

monoterpenes (C10). Chain elongation by additional incorporation of IDP in an analogous reaction sequences 

provides (2E,6E)-farnesyl diphosphate (FDP), the precursor of the sesquiterpenes (C15), and (2E,6E,10E) 

geranylgeranyl diphosphate (GGDP), the starting compound for the diterpenes (C20). Attaching more IDP 

units leads to macromolecular polyisoprenes of different chain lengths (e.g. rubber). 

 

Figure 5: Biosynthesis of GDP (top) and squalene (below). The cleavage of the diphosphate anions of DMADP yields 
an allyl cation (head), which undergoes electrophilic linkage of IDP (tail) to generate geranyl diphosphate (GDP). This 
head to tail linkage is also the process behind chain elongation that leads to FDP, GGDP and other substrates. Another 
possibility is the head to head linkage which by dimerization of two units of FDP leads to triterpene squalene. 

In an optional third phase, diversification proceeds by the polymerization of IPP units by prenyl 

transferases. Three acyclic precursors undergo various reactions like head-to-head dimerization of FDP or 

GGDP to yield triterpene squalene (C30, Figure 6) and the tetraterpene phytoene (C40) respectively. FDP or 

GGDP undergo additional polymerization reaction with additional isoprene units (C50+ for dolichols and 

rubber) or cyclization into complex structures. Prenyl side chains can additionally be linked by to proteins, 

quinones or other biomolecules by alkylation.76 Furthermore GDP, FDP and GGDP act as substrates for 

reactions in the metal-mediated intramolecular cyclization that generates diversity of compounds with 

complex ring systems (Figure 6). In plants and microbes, these ring systems are often referred to as the 

terpene hydrocarbons and oxygenated terpenoids. 
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Figure 6: Biosynthetic pathway behind the terpenoid diversity. IDP and DMADP are the basic substrates behind all 
the terpenoid diversity. The chain elongation leads to geranyl diphosphate (GDP), the direct precursor of the 
monoterpenes (C10). Further, chain elongation by incorporation of IDP provides farnesyl diphosphate (FDP), the 
precursor of the sesquiterpenes (C15), and geranylgeranyl diphosphate (GGDP), the substrate for the diterpenes (C20). 
Furthermore GDP, FDP and GGDP act as substrates for reactions in the metal-mediated intramolecular cyclization that 
generates diversity of compounds with complex ring systems. 

4.4 Regulation of Terpene Biosynthesis 

4.4.1 Subcellular localization of terpene biosynthesis in plants 

The IDP and DMADP biosynthesis pathways are localized in different cellular compartments in 

plants.77-79 The MEP pathway is located in the plastids and it supplies the biosynthetic precursors for 

isoprene, the mono (C10)-and diterpenes (C20), carotenoids (C40), chlorophyll (C20) and tocopherols. The 

MVA pathway is the characteristic of cytosol, where it is involved in the formation of sesqui (C15) - and 

triterpenes (C30) and phytosterols (Figure. 7). Although the localization in different compartments allows the 

two pathways to act independent of each other, certain exchange of precursors (metabolic crosstalk) has been 

observed, mostly from plastids towards the cytosol.80-83 The scope and direction of the exchange depends on 

the species and plays an important role in the regulation of terpene metabolism.47,84 This localization of initial 

precursors and further prenyl diphosphates and leads to the partitioning of corresponding terpene families 



 

 

between plastids (GDP and GGDP, mono-and diterpenes) and cytosol (FDP, sesquiterpenes) (Figure. 7). 

However, the separation of the GDP and FDP pool is not strictly observed in all plants.84,85 

 

 
 

Figure 7: Compartmentalization of terpene biosynthesis. The two IDP and DMADP biosynthesis pathways are 
localized in different cellular compartments in plants. The MEP pathway is located in the plastids and it supplies the 
mono (C10)-and diterpenes (C20), carotenoids (C40). The MVA pathway is located in cytosol, where it is involved in the 
formation of sesquiterpenes (C15) and triterpenes (C30) and phytosterols. 

4.4.2 Regulation of terpene biosynthesis in Plants 

Interestingly, terpenes are accumulated in plants in specific tissues or cell types, and moreover the 

biosynthesis of these compounds seems to be highly regulated. The accumulation of terpenes is tightly 

controlled by regulating the corresponding biosynthetic enzymes. The transcriptional control of 

corresponding genes has been shown to mediate the induction of sesquiterpenes biosynthesis in tobacco.86,87 

The same acetyl-CoA units generated during the mevalonate pathway are utilized for both biosynthesis of 

sterols and primary isoprenoids as well as pathogen induced biosynthesis of antimicrobial sesquiterpenes.88 

Pathogen challenged cells suppress sterol biosynthesis and divert the carbon flow (~20%) into the new 

biosynthetic pathway of antimicrobial terpenes by upregulation of defense response induced branch 

pathways.89 Otherwise, these compounds are produced and accumulated in specific cells and tissues, best 

examples being the pathogen-induced sesquiterpene accumulation in solanaceous plants (Figure 8).90-92 The 

accumulation in specific compartments has been studied in case of insecticidal terpenes in glandular ducts of 

cotton,93 resins94,95 and trichomes96-99. Thus it can be inferred that terpene biosynthesis in plants is both 

spatially and temporally regulated. 



 

 

 

Figure 8: Sesquiterpene accumulation in solanaceous plants. (A) Scanning electron microscopy (SEM) image of a 
young wild tomato leaf (Solanum habrochaites,). At least five trichome types can be observed: Type 1, tall glandular 
trichomes with a single secretory cell; Type 2, tall non-glandular trichomes; Type 3, short hooked non-glandular 
trichome; Type 6, glandular trichomes with four head cells; Type 7, short glandular trichomes. (B) Detail of a tomato leaf 
(Solanum lycopersicum) showing Type 6 and Type 3 trichomes. (C) Detail of a wild tomato leaf (S. habrochaites) 
showing Type 4, Type 6 and Type 7 trichomes. (D) Capitate trichome of Nicotiana sylvestris, similar to Type 4 trichomes 
of tomato. A droplet of diterpenoid-rich exudate can be seen on the side of the glandular head (white arrow). Adapted 
with permission from Tissier et al. 99 

4.5 Terpene Synthases 

4.5.1 Enzymology 

The biosynthesis of vast diversity of terpenes with complex ring systems from the corresponding 

acyclic prenyl diphosphates is catalyzed by promiscuous enzymes known as terpene synthases. Sometimes, 

they are also called terpene cyclases when they catalyze primarily cyclization reaction.1 Progress in 

understanding terpenoid diversity has predominantly been focused on the development of comprehensive 

enzymatic models for terpene synthase catalysis.100-105 Interestingly, all the terpene synthases that were 

cloned in the form of cDNA106 or isolated directly from plants107 were found to have similar biochemical 

properties. The encoding cDNAs for these enzymes exhibit chain length of 550 to 850 amino acids,108 

optimum pH in a range of 6.0 - 7.5,109 and require divalent metal cations such as Mg2+ or Mn2+ ions as co-

factors. However monoterpene synthases from gymnosperms are additionally dependent on a monovalent 

cation, usually K+ and shows preference for Mn2+ and Fe2+ ions in contrast to Mg2+ ions.108  

Overall, the enzymes exhibit remarkable control of multiple stereochemical transformations along 

complicated reaction pathways. Cycloartenol synthase is a perfect example of the enzymatic control, it uses 



 

 

the triterpenoid oxidosqualene as a substrate and forms the first multicyclic intermediate in the biosynthesis 

of plant sterols.110 In the cyclization process, eleven bonds are broken and the same number made with nine 

chiral centers. The control of the cyclase can be appreciated by the fact that it yields only 1 of approximately 

500 possible stereoisomers (29).100  

The emphasis in terpenoid biochemistry has moved towards using molecular tools to decipher the 

structural characteristics of terpene synthases and correlating it with their corresponding reaction mechanism. 

Advances in cloning, expression and X-ray crystallography led to major advances towards connecting their 

primary amino acid sequence, resultant tertiary structure, and active site chemistry. This led to significant 

progress in understanding of monoterpene,103 sesquiterpene101 and triterpene100 synthase activity. Ten terpene 

synthases from plants, bacteria, and fungi have been successfully crystallized and their structures confirmed 

by X-ray crystallography.111-120 Terpene synthases can be classified into two major categories based on their 

functionality, Type I synthases are enzymes that initiate catalysis with the ionization of the allylic 

diphosphate substrate, whereas Type II enzymes starts by proton addition to the substrate. Another interesting 

fact is that Type I synthases consists of monoterpene, sesquiterpene and diterpene synthases, Type II 

synthases includes diterpene and triterpene synthases. Furthermore, interestingly terpene synthases share 

greater sequence similarity to those from the same species than to mechanistically related enzymes from 

other species.121 For example, monoterpene synthases from Abies grandis (Grand fir) exhibit a sequence 

similarity of 70-95% at the amino acid level but catalyze completely different reactions, while enzymes from 

other plant species like conifers, which have an amino acid similarity less than 30% may form the same 

products.122 For this reason, it is not possible to predict the catalytic function of a terpene cyclase based on 

their primary structure.  

This thesis will focus on the enzymology of the Type I terpene synthases and mainly centered on the 

multiproduct terpene synthases TPS4 and TPS5 from Zea mays (maize) and MtTPS5 form Medicago 

truncatula. Both of them form multiple products by cyclization of FDP (C15) and also accepts GDP (C10) as 

substrate. 

4.5.2 Multiproduct Terpene Synthases 

Terpene synthases convert the acyclic prenyl diphosphates into a variety of cyclic and acyclic 

terpenoids. All sesquiterpenes known to date are derived from 300 basic hydrocarbon skeletons formed by 

sesquiterpene synthases from a single precursor FDP. The major factor behind terpene diversity is the large 

number of different terpene synthases and the fact that some of these enzymes produce multiple products. 



 

 

This property was first noticed in terpene synthases of plants when it was realized that the production of 

multiple products in consistent proportions was retained even when the protein was expressed in vitro.106 The 

variety of products that are generated by a single enzyme can also vary extremely. Apart from highly specific 

enzymes such as the aristolochene synthase from Aspergillus terreus, -selinene synthase and -humulene 

synthase from Abies grandis hold the current record producing 52 and 34 different sesquiterpenes, 

respectively.122-125 In addition to the main product, nearly half of all characterized monoterpene and 

sesquiterpene synthases form significant amounts of additional products (defined as at least 10% of the total) 

and are consequently classified as multiproduct synthases.106,126 It is believed that the ability to form a large 

number of products from one substrate is mainly due to the unusual electrophilic reaction mechanism of these 

enzymes.106 At the same time, this reflects the tendency of nature, to form an evolving mechanism where a 

maximum number of products are formed by using least number of biosynthetic steps.2,111,127 But 

unfortunately, there is a lack of clear understanding about the structural characteristics leading to this 

flexibility, as so far none of the multiproduct synthases have been successfully crystallized.128 The closest 

candidate to have confirmed crystal structure is the sesquiterpene cyclase epi-isozizaene synthase (EIZS) 

from Streptomyces coelicolor, but it is not a multiproduct synthase in its true sense as its product profile in 

addition to 79% epi-isozizaene has only five minor sesquiterpenes.129-131 

4.5.3 Reaction Mechanism of Multiproduct Synthases 

4.5.3.1 Metal ion binding and diphosphate cleavage  

The reaction cascade of a sesquiterpene synthases is initiated by the metal-mediated cleavage of the 

diphosphate of (2E,6E)-farnesyl diphosphate. All terpene synthases require a divalent cation for optimal 

activity in vitro. Insights into the mechanistic roles for the metal ions have been obtained from the 

crystallographic studies of 5-epi-aristolochene synthase (TEAS),112 pentalenene synthase,111 bornyl 

diphosphate synthase119 trichodiene synthase117 and more recently, sesquiterpene cyclase epi-isozizaene 

synthase (EIZS) from Streptomyces coelicolor. Sesquiterpene synthases have been reported to prefer Mg2+ in 

vitro, but they also accept Mn2+ at low concentrations.132-135 In general, monoterpene synthases seem to be 

less selective in their divalent cation requirements.103 Interestingly, examination of the metal requirement of 

avian prenyltransferase,136 supported the presence of two divalent metal ions in binding of the highly charged 

diphosphate group, leading to the formation of a substrate complex with the enzyme. At least a single 

DDxxD motif appears in nearly all Type I terpene synthases and these aspartates residues direct the substrate 

binding via the coordination of magnesium ions by forming salt bridges with the diphosphate group. This 



 

 

binding mechanism has been confirmed by X-ray crystallography studies of trichodiene synthase,117 bornyl 

diphosphate synthase119 and farnesyl diphosphate synthase113. Additionally, based on various studies the 

metal cations have been suggested to neutralize the development of negative charge on the diphosphate, 

preventing the regeneration of the substrate.104,137-141 After initial substrate binding, the biosynthetic cascade 

is further divided into partial reactions and they follow logically into separate catalytic events. 

4.5.3.2 Cationic reaction cascades in the active site 

The cleavage of the diphosphate anion from the substrate leads to the formation of a highly reactive 

transoid farnesyl carbocation, after isomerization further down the cascade it undergoes various cyclizations 

and rearrangements, such as methyl or hydride shifts. Due to its constrained geometry, the electrophilic 

transoid farnesyl cation can only attack the distant C10-C11 double bond, whereby either the (2E,6E)-

germacrene-11-yl cation or (2E,6E)-humul-10-yl cation are formed (Figure. 9).  

 
Figure 9: Possible cyclizations of (2E,6E)- or (2Z,6E)-farnesyl cations and some resulting carbon skeletons of 
sesquiterpenes. The loss of the diphosphate anion leads to the formation of a highly reactive transoid farnesyl cation, 
which after isomerization undergoes various cyclizations and rearrangements, such as methyl or hydride shifts. Due to its 
constrained geometry, the electrophilic transoid farnesyl cation can only attack on the distant C10-C11 double bond. 
However after rotation around C2-C3 double bond to (2Z,6E)-farnesyl cations, the geometrically suitable conformation 
leads to majority of cyclized products. 

Some terpene synthases overcome this geometrical constraint by conversion to cisoid farnesyl cation 

and subdue the energy barrier of 12 kcalmol-1103,142 by rotation around C2-C3 double bond and by the release 

and migration of diphosphate anion.103,105,143 The accepted mechanism leads to the generation of the tertiary 

allylic nerolidyl diphosphate intermediate by the recapture of diphosphate at the C3 position. A rotation 



 

 

around the newly formed C2-C3 sigma bond and the subsequent dephosphorylation ultimately leads to the 

conformational desired (2Z,6E)–farnesyl cation (Figure. 9).144 This mechanism is analogous to the upstream 

isomerization of (2E)-GDP to (2Z)–neryl cation via the intermediate linalyl diphosphate.105 Majority of the 

cyclic monoterpenes are formed from the geometrically favorable cisoid cation, based on the electrophilic 

attack on distant bonds, which leads to the medium-sized C6-, C7-, C10- or C11 rings. In the case of 

sesquiterpenes, the bisabolyl cation, cycloheptenyl cation, (2Z,6E)-germacrene-11yl cation and (2Z, 6E)-10-

humulyl cation lead to the corresponding bisabolane, daucane, cadalane and himachalane products.  

In this thesis, the focus is on two sets of multiproduct synthases, TPS4 and TPS5 from Zea mays145,146 

and MtTPS5 from Medicago truncatula.147-149 Garms. et al,149 had postulated the mechanistic pathway 

involved in the formation of 27 products from MtTPS5 using deuterium-labelled substrates. They were also 

able to determine the absolute configuration of individual products and further establish the initial 

conformation of the substrate and the stereochemical course of the reaction cascade.  

The final hydrophilic products are released from the hydrophobic pocket either by elimination of a 

proton (sesquiterpene hydrocarbons) or by reaction with a water molecule (sesquiterpene alcohols). Pre-

steady state kinetic studies of several sesquiterpene synthases has shown that slow release of the product is 

the rate limiting step after rapid accumulation of terpenoids in active site.150,151 

4.6 Discovering Catalytic Promiscuity 

In many cases, enzymes can already catalyze more than one reaction. It is generally believed that 

enzymes with promiscuous functions evolved over time to acquire better specificity and activity. This is 

dependent on the plasticity of the protein to alter the product profile by minor amino acid mutations. The 

challenge is to use mechanistic reasoning to discover these new reactions. Thus enzyme promiscuity is 

considered an important tool towards understanding enzyme evolution and engineering them as better 

catalysts.152,153 Terpene synthases, especially sesquiterpene synthases are well known for their catalytic 

promiscuity. Multiproduct terpene synthases are ideal examples to study the promiscuity of these enzymes. 

The champion for this behavior is, -selinene synthase from Abies grandis, producing 52 different 

sesquiterpenes, from single substrate FDP. Yoshikuni et al., were successfully able to control this reaction 

pathway of -selinene synthase, and by selective mutations of plasticity residues and were able to improve 

the product selectivity for these complex reaction cascade.154 



 

 

4.6.1  Site directed mutagenesis studies 

The high fidelity of the multiproduct terpene synthases suggests that these enzymes must generate a 

specific sequence of reaction coordinates in the active site for the correct execution of the reaction cascade. In 

absence of crystal structure of multiproduct enzymes, inference can be drawn from aromatic residues lining 

the active site of 5-epi-aristolochene synthase from tobacco (TEAS) and pentalanene synthase. Chemical 

models based on these known structures suggest that the carbocation intermediates are directed through 

cation-pi interactions155,156 involving phenylalanine, tryptophan and tyrosine residues. The crystal structure of 

the TEAS contains a catalytic triad of aspartate 444, tyrosine 520, and aspartate 525 which delivers a proton 

to the neutral intermediate germacrene A.112,157 A comparison of the sequence of MtTPS5 with TEAS and 

site-directed mutagenesis revealed the importance of tyrosine 526 in an equivalent position.149 On exchange 

of Tyr520 with phenylalanine has dramatic effect on the product profile of TEAS, which changed to 

germacrene A as its sole product, and in case of MtTPS5, also generated almost exclusively 

germacrenes.149,157 In case of MtTPS5, this suggested an alternative route to the general accepted pathway to 

sesquiterpenes with a cadalane skeleton.149 These studies showed the importance of proton transfer reactions 

in terpene biosynthesis and demonstrate how the alteration of only a single amino acid can have a dramatic 

effect on reshaping the active site. These highly versatile enzymes give the plants the opportunity to adapt 

very quickly to environmental stress and other changes. In a nutshell, deciphering the key amino acids that 

control the carbon flux in distinct cascades can be used to tailor enzymes for by simple mutations. The 

previous work on -selinene synthase and the work in our group on MtTPS5 demonstrate the feasibility of 

exploiting the underlying evolvability of active site, and provide useful approaches for novel enzyme design. 

4.6.2 Terpene synthases can accept multiple substrates 

Sesquiterpene synthase also display proclivity towards accepting different substrates, they not only 

accept FDP (C15) but also shorter GDP (C10) to generate a multiproduct profile. This promiscuity is an 

important cornerstone in rapid functional divergence of terpene synthases. Their broad substrate specificity 

gives them the liberty to utilize the available substrates in the system to generate different volatiles. Thus, 

substrate availability is an important factor that determines the type and quantity of terpenoids synthesized. 

However, historically determining the correct substrate has been a major challenge for scientists 

working with terpene synthase enzymes.158 This has evidently been shown in monoterpene synthases with the 

discovery by Schilmiller et al., reporting the discovery of a new substrate for enzymes of plant 

monoterpenoid biosynthesis.159 Monoterpene synthases have been found to be promiscuous in vitro, 



 

 

employing geranyl diphosphate (GDP), as well as its (2Z)-isomer neryl diphosphate (NDP), and a tertiary 

isomer linalyl diphosphate as its substrate. From in vitro studies, early researchers had concluded that for 

monoterpene synthases that NDP was the general substrate instead of now recognized GDP.158 This was also 

the predictable conclusion because with GDP, the enzyme would first have to isomerize the C2-C3 double 

bond before cyclization.160,161 In late 1970s, Rodney Croteau and his coworkers in their landmark work on 

monoterpene synthases demonstrated that for many plant monoterpene synthases, GDP was probably the 

native substrate. They were also able to show conclusively that these enzymes could carry out the double 

bond isomerization. Moreover, kinetic studies showed that GDP was much more efficient than its 

stereoisomer NDP.103,162 However recently, Schilmiller et al., have shown convincing evidence that NDP is 

indeed the native substrate for NDP synthase from tomato (Solanum lycopersicum). 159 Similar promiscuious 

behavior was also suggested in case of sesquiterpene synthases, Cop4 and Cop6 from Coprinus cinereus that 

showed formation of different -bisabolene carbocation depending on the substrate geometry.163 

In this thesis, mechanistic studies with purified multiproduct synthase MtTPS5 from Medicago 

truncatula and TPS4 and TPS5 from Zea mays were performed to investigate the different promiscuous 

behaviors of these three enzymes. In addition to using isotope labelled substrates to study and confirm the 

branching of sesquiterpene and monoterpene carbocationic intermediates. In addition, the effects of cis-trans 

isomers of FDP and GDP as a surrogate for secondary cisoid neryl cation intermediate generated by terpene 

synthases that can isomerize the  bond of all-trans-FDP have also been investigated. Moreover, in order to 

decipher the structural basis of the terpenoid chemodiversity in light of the lack of crystal structures of 

multiproduct synthases, the development of a structural mimic as inhibitor and possible co-crystallization 

candidate has also been reported.  

 
 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

5 Aim of the thesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Terpene diversity can be explored further by using the catalytic promiscuity of multiproduct terpene 

synthases in combination with alternate substrates. A major goal of this thesis is to better define the 

multiproduct terpene synthase by using artificial substrates as metabolic molecular probes. The aim was to 

utilize the substrate promiscuity of the multiproduct terpene synthases MtTPS5 from Medicago truncatula149 

and TPS4 and TPS5 from Zea Mays145 to study how alternate substrates might influence their catalytic 

activity. These labelled and (2Z)-configured substrates were used as metabolic probes to characterize the 

catalytic reaction cascade. This will also help evaluate the interaction with putative substrate recognition 

regions of the enzyme that contributes to the observed regio- and stereoselectivity.164,165 Another major 

intention was to find out whether the turnover with substrate stereoisomers166 affects the catalytic turnover 

and the product profile. This will help dissect the mechanistic features of terpene synthases that catalyse the 

enigmatic isomerization reaction. Considering rapid advances in enzyme engineering over the last decade as 

a source of novel biosynthetic processes, the focus of this thesis was to explore the potential of using 

substrate analogs as biosynthetic tools. Ultimately, the objective was to further optimize and enhance existing 

catalytic capabilities or adding new catalytic functions to the existing enzymes. 

 

Manuscript 1: Isotope sensitive branching and kinetic isotope effects to analyse multiproduct terpenoid 

synthases from Zea mays. 

Isotope sensitive branching experiments constitute a valuable tool with respect to multiproduct enzymes, 

because they describe the effects of isotopic substitution in the substrate. The resulting kinetic isotope effect 

leads to rate enhancement in the formation of one product at the expense of a second product; this trade-off 

indicates that the two products arise from a common intermediate. Isotopically sensitive branching was 

investigated in case of the multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from Zea mays that 

catalyze the formation of mono and sesquiterpene volatiles. This gives us the opportunity to examine the 

mechanistic details of multiproduct terpene synthases and to determine whether the final deprotonation of 

cationic intermediates en-route to mono- and sesquiterpenes is rate-limiting. Furthermore, deuterium kinetic 

isotope effects and product composition were also investigated for TPS4 and TPS5 enzymes. 

 

Manuscript 2: Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from 

Zea mays. 

Two closely related multiproduct terpene synthase genes encoding enzymes, namely TPS4 and TPS5 accept 

GDP and FDP as substrates and convert them into two types of cyclic products with cyclohexenyl- or 



 

 

bicyclo[3.1.0]hexyl moieties as common structural features. To reveal further details of the enzyme 

mechanism, we synthesized deuterium labelled substrate analogs for both geometric isomers of the critical 

C(2)–C(3) bond as the probe for isotope sensitive branching. These were used to evaluate the rate limiting 

effects of the initial isomerization step and to study whether the cyclization of (2Z)-GDP and (2Z,6E) FDP 

would proceed via the same cascade as observed with their corresponding natural substrates. 

 

Manuscript 3: Inhibition of a multiproduct terpene synthase from Medicago truncatula by 3-bromoprenyl 

diphosphates. 

The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of 

farnesyl diphosphate (FDP) into a complex mixture of 27 sesquiterpenoids. There is a lack of definitive 

understanding about the structure of multiproduct terpene synthases due to the absence of any crystal 

structures. 3-Bromo substrate analogs of geranyl diphosphate and farnesyl diphosphate were synthesized 

because of their geometrical similarity and evaluated as substrates for MtTPS5. These substrates have 

additional advantage that the highly electronegative bromine atom can strongly influence the stability of the 

neighbouring carbocationic species but imposes no additional steric effect in comparison with the natural 

substrates. These analogs could either provide novel sesquiterpenes to investigate mechanistic aspects of the 

MtTPS5, or they could act as potent inhibitors of the enzyme. In case of inhibition it can be used to provide 

an active site resolved crystal structure and act as co-crystallization candidate like in the case of aristolochene 

synthase with farnesyl-thiolodiphosphate. 167 

 

Manuscript 4: Novel biosynthetic products from multiproduct terpene synthase from Medicago truncatula 

using non-natural isomers of prenyl diphosphates 

Terpene product diversity has been altered successfully in a few cases, but for the most part mutagenesis has 

resulted in either abbreviation or slight extension of a native reaction pathway.109,124,157,168-171 Redirection of 

enzymatic chemistry or the introduction of new catalytic activities has been elusive. Multiproduct terpene 

synthases with their remarkable flexibility provides an ideal active site scaffold to test the geometric isomers 

as substrates for new cyclization reactions. The multiproduct sesquiterpene synthase MtTPS5 from Medicago 

truncatula catalyzes the conversion of farnesyl diphosphate (FDP) into a complex mixture of 27 

sesquiterpenoids. The aim was to test how the geometric conformation of the substrate determines the first 

cyclization event and also to characterize the resulting cyclization products of (2Z,6E)-FDP. This could either 



 

 

lead to similar product profile as the natural substrate (2E,6E)-FDP or lead to novel products by alternate ring 

closure from a highly reactive nerolidyl carbocation.  

 

This thesis is aimed towards gaining a better understanding of the highly promiscuous multiproduct terpene 

synthases which can act as a model system for designing better future catalysts. The alternate substrates 

would not only serve as metabolic probes for complex mechanistic pathways but also explore them as tools 

for new biosynthetic products. In order to understand the structural basis of these high fidelity enzymes, easy 

to synthesize inhibitors can be used as co-crystallization candidates, this could improve the chances of 

obtaining the crystals for X-ray studies.172 In conclusion, the scientific research described in this thesis is 

aimed at using artificial substrates towards characterizing the structural and mechanistic features that lead to 

catalytic promiscuity of multiproduct terpene synthases, and use them as a catalytic tool to achieve 

biosynthesis of desired terpenoid structures. 
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Isotope sensitive branching and kinetic isotope
effects to analyse multiproduct terpenoid
synthases from Zea mays†

Nathalie Gatto,a Abith Vattekkatte,a Tobias Köllner,a Jörg Degenhardt,b

Jonathan Gershenzona and Wilhelm Boland*a

Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from Zea

mays exhibit isotopically sensitive branching in the formation of mono-

and sesquiterpene volatiles. The impact of the kinetic isotope effects and

the stabilization of the reactive intermediates by hyperconjugation along

with the shift of products from alkenes to alcohols are discussed.

Terpenes constitute the largest andmost diverse class of plant natural
products with more than 30000 members.1,2 Volatile terpenes, which
represent a major class among herbivore induced volatiles, are
synthesized by specific terpene synthases. These enzymes have
been extensively investigated in recent decades, and various cDNAs
encoding plant terpene synthases involved in primary and secondary
metabolismhave been cloned and characterized.3,4 Terpene synthases
are able to convert acyclic precursors such as geranyl diphosphate
(GDP, C10), farnesyl diphosphate (FDP, C15) and geranylgeranyl
diphosphates (GGDP, C20) into cyclic monoterpenes (C10), ses-
quiterpenes (C15) and diterpenes (C20), respectively.

5 As the first
reaction step, the unsaturated diphosphates dissociate into
highly reactive carbocations and diphosphate anions. These
cations interact with electron-rich double bonds in their vicinity
resulting in intramolecular cyclizations. In addition, rearrange-
ments, including hydride or methyl shifts, occur prior to stabili-
zation by either deprotonation or reaction with a nucleophile.

In addition to terpene synthases, which generate a single product,
there are multiproduct terpene synthases, which generate a bouquet
of acyclic and cyclic products from a single precursor.3 These
enzymes have the advantage that a single mutation may generate
a bouquet of new compounds improving the plant’s defense.6

The d-selinene synthase and g-humulene synthase from Abies
grandis hold the current record, producing 52 and 34 different
sesquiterpenes, respectively.3 To better understand themechanistic
details of multiproduct terpenoid synthases and to determine

whether the final deprotonation of cationic intermediates en route
to mono- and sesquiterpenes is rate-limiting, deuterium kinetic
isotope effects and product composition were investigated for TPS4
and TPS5 enzymes from B73 and Delprim maize varieties. The
different terpene profiles were controlled by allelic variation of the
closely related terpene synthase genes, TPS4 and TPS5.6 Although
both enzymes showed the typical properties of sesquiterpene
synthases, they not only accepted FDP (C15) but also GDP (C10) as a
substrate. Both substrates were converted almost exclusively into two
types of cyclic products, with cyclohexenyl- and bicyclo[3.1.0]hexyl
moieties as structural elements (Scheme 1). To study the kinetics of
the reaction cascade, we synthesized labeled substrates with deuter-
ium atoms completely surrounding the cationic center at C(3) of the
key intermediates (Scheme 1). Depending on their stability and ease
with which deprotonation reactions, different reaction channels may
be favoured.

[2-2H]- and [2,4,4,9,9,9-2H6]-GDP as well as [2-2H]- and
[2,4,4,13,13,13-2H6]-FDP were prepared according to the protocol
of Arigoni et al. (Scheme 2).7 For hexadeuterated analogues,
[1,1,1,3,3-2H5] ketones 1b and 1d were prepared by proton-
deuterium exchange reaction in D2O in presence of potassium
carbonate. The subsequent Peterson olefination of the ketones
1a–d with [2,2-2H2]-trimethylsilylacetate 2 afforded the [2-2H]- or
[2,4,4,9,9,9-2H6]-carboxylic acids. The corresponding methyl esters
were converted to the mono- and hexadeuterated alcohols 4a–d
using diisopropyl aluminum hydride. Labeled diphosphates were

Scheme 1 Isotope sensitive branching strategy.

aMax Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena,
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prepared according to Woodside et al.8 and yielded the corres-
ponding trisammonium geranyl diphosphates 5a–b and tris-
ammonium farnesyl diphosphates 5c–d.

The synthesized deuterium labelled GDP and FDP substrates
were incubated with TPS4 and TPS5. The resulting terpenoid profiles
were quantified by GC-FID and showed predominantly cyclic sub-
stances with a terpinan/sabinan (monoterpenes) and a bisabolane/
sesquisabinane (sesquiterpenes) skeleton, respectiveely.9 Acyclic pro-
ducts were also present, including b-myrcene, and linalool fromGDP
and two sesquiterpenoids, (E)-b-farnesene and (3R)-(E)-nerolidol from
FDP. The acyclic terpenes result from the deprotonation or water-
capture of the first carbocation formed upon cleavage of the diphos-
phate. Comparing product ratios from labeled versus unlabeled
precursors, we found that both cyclases exhibited a constant 1 :2
ratio (acyclic/cyclic monoterpenes) for the GDP substrates as well as
constant ratios of 1 :5 for TPS4 and 1 :10 for TPS5 for the FDP
substrates. These results suggest that the labeling with stable
isotopes did not influence the kinetics of the first ring closure,
although the delocalized positive charge is partly surrounded by
deuterium.

The relative overall rates of mono- and sesquiterpene formation
from incubation of deuterated GDP and FDP with TPS4 and TPS5
and the apparent isotope effects kH/kD are given in Table 1. Incuba-
tion of monodeuterated [2H1]-GDP 5a and [2H1]-FDP 5c with both
cyclases resulted in relative overall rates that were almost identical to
those obtained with unlabeled substrates. The isotope effects for
monodeuterated [2H1]-GDP 5a and [2H1]-FDP 5c are close to unity.
However, the incubation of hexadeuterated substrates noticeably,
reduced the rate of product formation. The relative total rate was
reduced by 15% (TPS4) or 25% (TPS5) upon incubation with [2H6]-
GDP 5b. The rate of suppression corresponded to an apparent
isotope effect kH/kD of 1.17 and 1.33, respectively. Similarly, enzy-
matic incubation with [2H6]-FDP 5d decreased the relative amount of
sesquiterpenes (19% and 21% with TPS4 and TPS5, respectively)
equivalent to kH/kD of 1.23 and 1.25, respectively. The observed
overall rate reductions upon incubation with hexadeuterated GDP
and FDP result from primary isotope effects (loss of 2H+). In contrast,
the isotope labels in the monodeuterated substrates have no direct
influence on the reaction mechanism, since the C(2)–D bond is not
cleaved during the whole cyclization cascade. Moreover, the varia-
tions in the product profiles and the overall rates were a result of

apparent secondary isotope effects. The difference in the rate of
volatile formation was even more pronounced in the case of
sesquiterpenes. The production of all cyclic products requires an
(E/Z)-isomerization step of the C(2)–C(3) double bond of the
(E)-configured substrates, which is achieved through tertiary allylic
phosphate intermediates, and linalyl- and nerolidyl diphosphate,
respectively. This phenomenon has been reported for the
product formation of maize sesquiterpene synthases TPS6,
TPS10, TPS11,3,10 and other terpene synthases.11

As mentioned above, the oxygenated cyclic volatiles were not
considered in the present data. To estimate the weight of this
approximation, quantitative kinetic measurements were carried
out. For [2H6]-FDP 5d with TPS4 with kH/kD = 1.15, 13% fewer
sesquiterpene formation (relative to FDP). Similar results were
obtained when the oxygenated cyclic volatiles were not considered
(a 19% decrease in the volatile production corresponded to a
kH/kD = 1.23) and justify the approximation made above.

Both cyclases showed minor changes in the formation of
limonene (4), a-terpinolene (6) and linalool (7) (Fig. 1). In
contrast a significant decrease of a-thujene (1) and sabinene
(2) along with a corresponding increase in sabinene hydrate (5)
was observed when TPS4 and TPS5 were incubated with [2H1]-
GDP 5a or [2H6]-GDP 5b when compared to incubation with
GDP. The observed kinetic isotope effects (KIE)s, corresponding
to a difference of 5 to 6 deuterium atoms between the sub-
strates, are in the range of kH/kD = 2.91–5.68. These values are in
agreement with those observed for terminating deprotonation
reactions of other monoterpene cyclases.12,13 In case of sub-
strates differing by only one deuterium atom, the observed KIEs
were much smaller (within a range of kH/kD = 1.10–1.18).

The first set of sesquiterpenes, comprising (S)-b-bisabolene
(11), (E)-g-bisabolene (12) and zingiberene (9), (Fig. 2), were not
affected by the isotopically sensitive branching experiments,
and only minor changes in product composition were observed
with hexadeuterated substrates (relative to unlabeled or mono-
deuterated analogues). A significant decrease in 7-epi-sesquithujene
(1), sesquithujene (2), sesquisabinenes A (5) and B (6) and (E)-a-
bergamotene isomers (3, 4) was observed after incubating [2H6]-FDP
5d with TPS4 (10–64%) and with TPS5 (26–61%), when compared to
natural FDP (Fig. 2).

This rate suppression was coupled with a corresponding
increase in the formation of g- and b-curcumene isomers,

Scheme 2 Synthesis of deuterated GDP and FDP.

Table 1 Effect of degree of labeling on total rate of monoterpene and
sesquiterpene formation

Substrate

TPS4-B73 TPS5-Delprim

Relative ratea (%) kH/kD Relative ratea (%) kH/kD

[2H1]-GDP 5a 101.09 � 0.45 B1b 99.98 � 0.84 B1b

[2H6]-GDP 5b 85.06 � 0.84 1.17b 75.02 � 0.78 1.33b

[2H1]-FDP 5c 106.21 � 6.95 B1b 101.30 � 1.11 B1b

[2H6]-FDP 5d 80.95 � 7.55 1.23b 79.65 � 1.94 1.25b

a Relative overall rates compared to those of incubation with unlabeled
GDP or FDP substrates (set at 100). Mean values from six replicates, �1
SD. b Apparent total rate isotope effects compared to those of incuba-
tion with unlabeled GDP or FDP substrates. Note: oxygenated cyclic
volatiles not considered.
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sesquithujene hydrate and 7-epi-sesquithujene hydrate by 175–400%
for TPS4 and 193–255% for TPS5. Because the biosynthesis of
sesquiterpene volatiles is mechanistically much more complex than
that of monoterpenes volatiles, only the observed KIEs for the
deprotonation reactions leading to 7-epi-sesquithujene and ses-
quithujene are presented. Thus, the observed KIEs were in the range
of kH/kD = 3.38–4.08 for the terminating deprotonation reaction,
leading to 7-epi-sesquithujene, and in the range of kH/kD = 4.17–6.24
for the terminating deprotonation reaction leading to sesquithujene.
These values are in agreement with those obtained with the mono-
terpene series and with previous studies on other monoterpene
cyclases.12,13 The corresponding KIEs were close to unity, demon-
strating that the monodeuterated labelling at C(3) had almost no
influence on the reaction cascade.

We previously proposed6 a reactionmechanism for the formation
of mono- and sesquiterpene products by TPS4 and TPS5. The
stabilization of the carbocationic intermediates is partly facilitated
by interactions (e.g. p–cation interactions) with the hydrophobic,
aromatic-rich environment and the DDxxD motif of the active-site of
the enzyme.9 Nevertheless, hyperconjugation is an important factor
for the stability of carbocation intermediates. Hyperconjugation is
considered to be the interaction of the vacant p-type orbital on the

cationic center with adjacent C–H or C–C s-bonds. Because a C–D
bond is stronger than a C–H bond, a C–H hyperconjugation
stabilizes an adjacent positive charge more than a C–D hyperconju-
gation. Accordingly, reactions involving breaking C–D are slowed
down. Such hyperconjugative weakening in reaction intermediates
due to isotopes induces secondary KIEs. In the present study, all
KIEs lead to the alteration of product distributions after isotopically
sensitive branching. To illustrate the effects of hyperconjugation, the
secondary KIEs of the cyclisation reactions of [2H6]-FDP 5d (Fig. 3)
and [2H6]-GDP 5b (Fig. 4) are discussed.

From [2H6]-FDP 5d, after the initial ionization–isomerization–
ionization sequence, the cyclization cascade is initiated by the
formation of (S)- and (R)-bisabolyl cations (A and B). These first
carbocations can be directly deprotonated to produce (S)-b-
bisabolene without noticeable KIEs (the positive charge being
located far from the deuterated center). Tertiary carbocations A1
and B1 are almost as stable as A and B because the positive
charge is distant from the deuterium labeled carbon center and,
hence, can be stabilized by C–H hyperconjugation. Secondary
carbocations A3 and B3, which are energetically less favorable
than tertiary ones (e.g. A4 and B4), are relatively stable due to
surrounding hydrogen atoms. Carbocations A4, A5, B4 and B5 are
the least stable ones, since the positive charge is fully surrounded
by deuterium atoms and hence, cannot be delocalized and stabilized
by C–D hyperconjugation. The stability of terminal carbocations
results in the production of the corresponding cyclic terpene. Taken
together, these observations are consistent with the product distribu-
tion obtained by isotopically sensitive branching experiments. Deu-
terium isotope effects are less pronounced in the monodeuterated
analogues (Table 1). Nevertheless, strong KIEs for the formation of
sesquithujene, 7-epi-sesquithujene or sesquisabinenes A and B were
observed after incubation of both enzymes with hexadeuterated
substrates (Fig. 4). In case of the bisabolyl carbocations A and B,
(Fig. 3), minor KIEs were observed for b- or g-bisabolene formation
since the reactive carbocation intermediates are located in an
exclusive [1H]-environment. Similarly, onlyminor KIEs were observed
for zingiberene isomers since the final deprotonation involves only
the loss of a hydrogen atom (no primary KIE). Deuterium isotope
effects on the monoterpene product distribution can also be ratio-
nalized in terms of hyperconjugation. As shown in Fig. 4, the
first step of the cyclization cascade is the C(1)–C(6) ring closure
of the linaloyl diphosphate, resulting in the formation of (S)- and
(R)-terpinyl carbocations C1 and C2. As for bisabolyl intermediates A
and B in the biosynthesis of sesquiterpenes, the positive charge is
positioned far away from the influence of the deuterated carbons.
Hence terminating steps via deprotonation or water capture leading
to (S)-(�)-limonene and a-terpineol or a-terpinolene, can occur
spontaneously and are not affected by kinetic isotope effects. As
discussed below, minor variations in product distribution were
observed when unlabeled or [2H1]-GDP were used as substrates.
These minor KIEs observed for limonene, a-terpinolene and
a-terpineol reflect the absence of destabilizing effects in the two
a-terpinyl carbocations. From C1 and C2, the cyclization cascade
proceeded to carbocation D which was subsequently rearranged to
the tertiary carbocations E1 and E2. Because the positive charge fully
surrounded by deuterium atoms is less efficiently stabilized as by

Fig. 1 Product distribution of main monoterpenes from incubations
of deuterated GDP with TPS4 and TPS5. (1) a-Thujene, (2) sabinene,
(3) b-myrcene, (4) limonene, (5) sabinene hydrate, (6) a-terpinolene, (7) linalool.

Fig. 2 Product distribution of main sesquiterpenes from incubations of
deuterated FDP with TPS4 and TPS5. (1) 7-epi-Sesquithujene, (2) sesquithujene,
(3) (Z)-a-bergamotene, (4) (E)-a-bergamotene, (5) sesquisabinene A,
(6) sesquisabinene B, (7) (E)-b-farnesene, (8) g-curcumene, (9) zingiberene,
(10) (S)-b-bisabolene, (11) b-curcumene, (12) (E)-g-bisabolene, (13) 7-epi-
sesquithujene hydrate**, (14) sesquithujene hydrate**, (15) (3R)-(E)-
nerolidol. ** Tentatively assigned structure.
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C–H hyperconjugation, strong deuterium isotope effects on the
formation of sabinene, sabinene hydrate and a-thujene were
observed. Obviously, E1 and E2 preferentially stabilize by react-
ing with water as a nucleophile rather than losing a positively
charged hydrogen isotope.

Multiproduct terpene synthases TPS4 and TPS5 from Zea
mays show isotopically sensitive branching in the reaction
cascade of prenyl diphosphates en route to mono- and sesqui-
terpene volatiles via a common carbocationic intermediate along
a branched reaction sequence. The primary kinetic isotope

effects of deuterium atoms on terminating deprotonations and
effects resulting from lower stabilization of the reactive inter-
mediates by hyperconjugation direct the reaction to an
enhanced formation of alcohols instead of olefinic products.
Accordingly, the extensive deuterium labeling of intermediary
cations is a valuable tool to identify branching points in complex
cyclization sequences of multiproduct terpenoid synthases.
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Fig. 3 Proposed mechanism for sesquiterpene formation from [2H6]-FDP. The black dots represent deuterated carbons.6

Fig. 4 Proposed reaction mechanism for the formation of monoterpenes
by TPS4 and TPS5 from (E)-[2H6]-GDP [7b].
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catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into 

a complex mixture of sesquiterpenes and monoterpenes, respectively. On incubation with 

labeled (2Z) substrates, TPS4 and TPS5 showed much lower kinetic isotope effects than 

the labeled (2E) substrates. The products arising from the deuterated (2Z)-precursors 
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increase in the efficiency due to (2Z) configuration emphasizes the rate limiting effect of 
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Substrate geometry controls the cyclization
cascade in multiproduct terpene synthases from
Zea mays†

Abith Vattekkatte,a Nathalie Gatto,a Tobias G. Köllner,b Jörg Degenhardt,c

Jonathan Gershenzonb and Wilhelm Boland*a

Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conver-

sion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiter-

penes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates like

(2Z)-[2-2H]- and [2,4,4,9,9,9-2H6]-(GDP) and (2Z,6E)-[2-2H]- and [2,4,4,13,13,13-2H6]-(FDP) were syn-

thesized analogous to presumptive reaction intermediates. On incubation with labeled (2Z) substrates,

TPS4 and TPS5 showed much lower kinetic isotope effects than the labeled (2E) substrates. Interestingly,

the products arising from the deuterated (2Z)-precursors revealed a distinct preference for cyclic products

and exhibited an enhanced turnover on comparison with natural (2E)-substrates. This increase in the

efficiency due to (2Z) configuration emphasizes the rate limiting effect of the initial (2E) → (2Z) isomeriza-

tion step in the reaction cascade of the multiproduct terpene synthases. Apart from turnover advantages,

these results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction

cascade towards valuable cyclic terpenoids.

Introduction

Plants produce a huge variety of secondary metabolites that
continue to amaze both plant biologists and natural product
chemists.1 The largest group of plant secondary metabolites
comprises the terpenes with more than 30 000 known com-
pounds.2 These molecules have applications ranging from
flavor and fragrance to biological functions such as hormones,
attractants for pollinators, or toxins.3 In addition, the terpe-
noid composition shows major qualitative and quantitative
variation among species and also within single species.4 The
structural diversity of terpenes is due to terpene synthases,
enzymes that convert the prenyl diphosphate substrates like

geranyl diphosphate (GDP, C10), farnesyl diphosphate (FDP,
C15) and geranylgeranyl diphosphate (GGDP, C20) into mono-
terpenes (C10), sesquiterpenes (C15) and diterpenes (C20),
respectively.2b Terpene synthases have been intensively investi-
gated in recent decades and various cDNAs encoding plant
terpene synthases responsible for the structural diversity have
been characterized.5

Certain terpene synthases are known for their catalytic
promiscuity. This catalytic promiscuity is due to a common
electrophilic reaction mechanism which is important for deci-
phering evolution of enzymes and engineering future enzy-
matic catalysts.6 One of the unique features of terpene
synthases is their ability to produce multiple products from a
single prenyl diphosphate substrate.7 The δ-selinene synthase
and the γ-humulene synthase from Abies grandis hold the
present record by producing 52 and 34 different sesquiter-
penes.8 Despite their overall sequence diversity, terpene
synthases possess several highly conserved amino acid resi-
dues.9 An aspartate-rich DDxxD motif located at the entrance
of the active site was shown to be involved in the binding of
the metal ion-complexed diphosphate ester substrate.10 In the
N-terminal part of monoterpene synthases, two arginine resi-
dues are present that are believed to influence the isomeriza-
tion of the initial substrate.11

†Electronic supplementary information (ESI) available: Product distributions of

main monoterpenes and sesquiterpenes from incubations of deuterated GDP
and FDP, respectively, with TPS4 and TPS5. Synthetic procedure and 1H, 13C

NMR spectra of compounds 3b, 3d, 4, 5a–d, 6a–d, 7a–d, 8a–d, 1-a–d and 2a–d

and 31P NMR spectra of compounds 1-a–d and 2a–d. IR spectra of compounds
3b, 3d, 4, 5a–d, 6a–d, 1-a–d and 2a–d. See DOI: 10.1039/c5ob00711a

aDepartment of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology,

Hans-Knöll-Strasse 8, D-07745 Jena, Germany. E-mail: boland@ice.mpg.de
bDepartment of Biochemistry, Max Planck Institute for Chemical Ecology,

Hans-Knöll-Strasse 8, D-07745 Jena, Germany
cInstitute for Pharmacy, University of Halle, Hoher Weg 8, D-06120 Halle, Germany
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Two closely related terpene synthase genes encoding multi-
product enzymes, namely TPS4 and TPS5, were recently cloned
from Zea mays.12 Both recombinant proteins accepted GDP
and FDP as substrates and converted them into two types of
cyclic products with cyclohexenyl- and bicyclo[3.1.0]hexyl moi-
eties as common structural features (Scheme 1). Product for-
mation is achieved by initial isomerization of the substrate
(E)-GDP or (E)-FDP into the tertiary allylic diphosphates
(Scheme 1). After dissociation, the rearranged linaloyl- or nero-
lidyl-cation cyclizes easily to a cyclohexenyl cation or by for-
mation of a bicyclo[3.1.0]hexyl moiety stabilized in both cases
by further deprotonation. Modeling of the TPS4 active site
cavity and docking studies with cationic intermediates
suggested that discrete steps of the reaction cascade are con-
trolled by two different enzyme pockets.13 We have recently
reported about the kinetic isotope effects and enhanced for-
mation of alcohols over olefinic products by deuterated precur-
sors of (2E)-GDP and (2E,6E)-FDP as compared to natural
substrates.14

To reveal further details of the enzyme mechanism, we
synthesized geranyl- and farnesyl diphosphates including
both geometric isomers of the critical C(2)–C(3) bond
(Scheme 1) using deuterium labels as a probe for isotope
sensitive branching. We were interested in whether the cycli-
zation of cis-isomers (2Z)-GDP (2a–b) and (2Z,6E) FDP (2c–d)
would proceed via the same cascade as observed with
their corresponding trans-substrates (1a–d) (Scheme 2). Most
studies involving several sesquiterpene synthases using FDP
isomers and analogues have been used to compare their
kinetic properties and further determine the mechanism of
carbocation quenching15 and the initial ionization-isomeri-
zation of all-trans-FDP for cis–trans-pathway-specific
enzymes.13,16 Here, we describe the effects of substrate’s con-
formation on the initial cyclization and the further course of
individual protonation and deprotonation reactions by
means of deuterium labeling. In contrast to our previous
study,14 both TPS4 and TPS5 cyclize labeled (2Z,6E)-FDP (2c–
d) and (2Z)-GDP (2a–b) showed quantitative difference in
volatile composition as compared to natural substrates.
Interestingly, they exhibited much higher turnover with (2Z)
substrates (2a–d) than with their natural (2E) substrates (1a–
d) and a reduced ratio of acyclic to cyclic products.

Results and discussion

To study the rate limiting effects of the initial isomerization
step catalyzed by TPS4 and TPS5 and their consequences for
the reaction cascade we synthesized labeled substrates (2a–d)
with deuterium atoms completely surrounding the C(3) cat-
ionic center of the key intermediates (Scheme 1). The deuter-
ium labels serve to investigate the alterations in product
distribution that might occur as a consequence of changing
the geometry of the C2–C3 double bond, which undergoes iso-
merization in the reaction sequence. These product alterations
depend on the nature of the initial carbocationic intermedi-
ates formed whose stability and ease of deprotonation may
favor different reaction channels.

Synthesis of substrates

[2-2H]- and [2,4,4,9,9,9-2H6]-GDP (2a–b) and [2-2H]- and
[2,4,4,13,13,13-2H6]-FDP (2c–d) were prepared by modifying the
protocol of Arigoni et al.17 (Scheme 3 and ESI†). For hexadeut-
erated analogues, [1,1,1,3,3-2H5] ketones 3b and 3d were first
prepared by proton-deuterium exchange reaction in MeOD in
presence of DBN (1,5-diazabicyclo[4.3.0]non-5-ene).18 Sub-
sequent Peterson olefination of the ketones (3a–d) with
[2,2-2H2]-trimethylsilylacetic acid 4 afforded a mixture of car-
boxylic acids, additionally labeled at C(2). After esterification,
the isomers were easily separated by flash chromatography
and provided the pure methyl esters (2E)-(5a–d) and (2Z)-(6a–d).
Mono- and hexadeuterated alcohols (2Z)-(8a–d) were gener-
ated by reduction of the methyl esters with diisopropyl alu-
minium hydride. Labeled diphosphates were prepared
according to Woodside et al.19 and yielded the corresponding
trisammonium (2Z)-geranyl diphosphates (2a–b) and trisam-
monium (2Z,6E)-farnesyl diphosphates (2c–d). The corres-
ponding (2E) substrates (1a–d) were synthesized from (2E)-(5a–d)
and have already been described.14 This procedure provides
an easy access to various labeled and unlabeled isomers of
prenyl diphosphates.

Scheme 1 Isotope sensitive branching strategy.

Scheme 2 Monodeuterated and hexadeuterated (2E)-GDP, FDP (1a–d)
and (2Z)-GDP, FDP (2a–d).
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Enzymatic transformations of labeled GDP and FDP by
TPS4 and TPS5

Impact of the substrate geometry on the catalytic turnover.
Both maize terpene synthases, TPS4 from the variety B73, and
TPS5 from Delprim, were incubated with both (2E)-series
labeled GDP (1a–b) and FDP (1c–d) and (2Z)-series labeled
GDP (2a–b) and FDP (2c–d). The terpenoid profiles resulting
from the incubation experiments were analyzed by gas chrom-
atography-flame ionization detection analysis (GC-FID) and
compared with those resulting from unlabeled substrates.
Fig. 1 compares the total rate of terpene formation resulting
from incubations of these substrates with TPS4 and TPS5.

Both TPS4 and TPS5 exhibited much higher turnover when
incubated with (2Z)-(2a–d) vs. (2E)-(1a–d) substrates (Fig. 1). In
Fig. 1, horizontal line at 100 represents the relative rate
obtained from unlabeled (2E)-GDP (A) and (2E)-FDP (B)
respectively. All labeled (2E)-isomers of C10 and C15 substrates
either show a decrease or values around the reference line for
both monoterpenes and sesquiterpenes. Whereas in case of
labeled (2Z)-isomers of C10 and C15 substrates there was a sub-
stantial increase in product formation on comparison with
unlabeled reference substrates.

The rate of monoterpene production showed 30% increase
after incubation with 2a and 17% with 2b in comparison to
their corresponding unlabeled (2E)-analogues. The difference
in the rate of volatile formation was even more pronounced in
the case of sesquiterpenes (2c–d). When incubated with the
monodeuterated 2c the sesquiterpene production increased by
∼200% and with the hexadeuterated 2d the corresponding
increase was ∼150% when compared with unlabeled (2E)-FDP.
The production of all C10 and C15 cyclic products requires an
initial isomerization of the C(2)–C(3) double bond of the origi-
nal substrate, achieved through the intermediate tertiary
allylic phosphates linalyl- and nerolidyl diphosphate, respect-
ively (Scheme 4). The substrates of the (2Z)-series (2a–d)
already possess the double bond in the correct configuration

allowing the direct cyclization of the emerging carbocationic
intermediate after ionization. The increased turnover clearly
indicates that the isomerization is the rate limiting step in the
reaction cascade with natural substrates. Removal of this rate
limiting factor leads to much higher efficiency in terpenoid
cyclization by these enzymes.

The production of all C10 and C15 cyclic products require an
isomerization of the C(2)–C(3) double bond of the original sub-
strate, achieved through the intermediate tertiary allylic phos-
phates linalyl- and nerolidyl diphosphate, respectively. The
substrates of the (2Z)-series possess the double bond already
in the correct configuration allowing the direct cyclization of
the emerging carbocationic intermediate after diphosphate
cleavage. This phenomenon has also been reported for the
product formation of some other sesquiterpene synthases like
trichodiene synthase from Fusarium sporotrichioides,20 and two
terpene synthases from Coprinus cinereus Cop4 and Cop6.16f,21

Fig. 1 Comparison of total rate of monoterpene (A) and sesquiterpene
(B) formation with incubations of deuterated (E)/(Z)-GDP and FDP with
TPS4-B73 and TPS5-Delprim. Horizontal line at 100 represents the rela-
tive rate obtained from unlabeled (2E)-GDP (A) and (2E)-FDP (B) respect-
ively. Boxplot: median (horizontal lines in boxes), interquartile range
(boxes, 1.5×-interquartile range (whiskers).

Scheme 3 Synthesis of deuterated substrates. Reagents and con-
ditions: (a) [2,2-2H2]-trimethylsilylacetic acid, 2 eq. mol. LDA, THF,
−78 °C to reflux; (b) Me2SO4, DIPEA; (c) DIBAL-H, CH2Cl2; (d) (i) NBS,
Me2S, CH2Cl2; (ii) (Bu4N)3P2O7H, CH3CN; (iii) ion exchange; (iv) cellulose,
CH3CN/NH4HCO3.
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Impact of the precursor diphosphate on the ratio of acyclic
versus cyclic volatiles. The terpenoid profiles from (2E)-GDP
and (2E,6E)-FDP substrates (1a–d) were dominated by cyclic
substances with terpinane/sabinane (monoterpenes) and bis-
abolane/sesquisabinane (sesquiterpenes) skeletons, respect-
ively. Incubation experiments with labeled (2Z)-GDP and
(2Z,6E)-FDP (2a–d) resulted in qualitatively the same series of
cyclic mono- and sesquiterpenes. This confirms that the for-
mation of cyclic products leads down the same pathway as for
the (2E)-isomer despite the generation of (2Z) instead of the
(2E)-carbocations via isomerization of the C(2)–C(3) double
bond. A few recent examples also reported that the products
from (2Z)-FDP are comparable to those obtained from the all-
trans-FDP.13,16f,21b In contrast the different product profiles
obtained from (2E)- and (2Z)-FDP by the epi-aristolochene
synthase from tobacco and sesquiterpene synthase from Copri-
nus cinereus (Cop4) were attributed to different starting confor-
mations of the isomeric substrates.21c,22

Three acyclic monoterpene olefins, (E)-β-myrcene, (R)-lina-
lool and (S)-linalool from (2E)-GDP and two acyclic sesquiter-
penes, (E)-β-farnesene and (3R)-(E)-nerolidol from (2E,6E)-FDP
were also present in the product mixtures of these enzymes.
These acyclic terpenes result from deprotonation or water-
capture of the first cation formed after cleavage of the diphos-
phate group. However, a very strong depletion in the amount
of acyclic monoterpenes, myrcene (98% reduction) and lina-
lool (65% reduction) was observed after incubation with the 2a
(2Z)-GDP (Fig. 2) in comparison to unlabeled (2E)-GDP for
both maize cyclases. The rate suppression was even more pro-
nounced with TPS4 after incubation of 2a, resulting in a com-
plete absence of β-myrcene and an 88% reduction of linalool.
The same effect was observed after incubation of hexadeuter-
ated (2Z)-GDP 2b with both enzymes: β-myrcene (almost com-
plete elimination) and linalool (48–80% reduction). Similarly,

strong decrease in the proportion of the acyclic sesquiterpenes
were observed with deuterated (2Z,6E)-FDP (2c, 2d). Thus,
incubation with hexadeuterated (2Z,6E)-FDP 2d led to a com-
plete absence of (E)-β-farnesene and nerolidol production with
both enzymes. Likewise, monodeuterated (2Z,6E)-FDP 2c lead
to a decrease in (E)-β-farnesene formation (97% with TPS5 and
complete elimination with TPS4 and nerolidol formation (com-
plete elimination with both enzymes). Nevertheless, the pro-

Scheme 4 General mechanism for generation of acyclic compounds and cyclic compounds by TPS4 and TPS5.

Fig. 2 Ratio acyclic/cyclic volatiles released after incubation of labeled
substrates with TPS4-B73 and TPS5-Delprim.
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duction of minute amounts of acyclic volatiles from (2Z)-sub-
strates can be explained by direct deprotonation from the
resulting carbocation or capture of a water molecule. These
results strongly support a mechanism by which the substrates
of the (2Z)-series (2a–d) are directly cyclized after ionization
due to the C(2)–C(3) double bond already being in a suitable
configuration for C(6)–C(1) ring closure (Scheme 4).

Interestingly, both TPS4 and TPS5 showed similar behavior
when incubated with same set of isomers, (2Z)-series (2a–d)
and (2E)-series (1a–d) (Fig. 2). They maintained a constant
ratio between acyclic and cyclic products from the same geo-
metric isomer. This ratio was 1 : 2 (acyclic/cyclic monoter-
penes) for the (2E)-GDP substrates (unlabeled and 1a–b) while
an average ratio of 1 : 22 was observed for the corresponding
(2Z)-GDP (2a–b). Similarly, for the unlabeled or deuterated
(2E,6E)-FDP, this ratio was 1 : 5 (acyclic/cyclic sesquiterpenes)
for TPS4 and 1 : 10 for TPS5. These results suggest that label-
ing with stable isotopes did not influence the kinetics of the
first ring closure although the delocalized positive charge is
partly surrounded by deuterium. Studies with monoterpene
synthases have shown that only terpene synthases that can iso-
merize the C(2)–C(3) π bond of (2E)-GDP can make cyclic
monoterpenes.23 Likewise, only sesquiterpene synthases
known to isomerize the C(2)–C(3) π bond of (2E,6E)-FDP have
been reported to synthesize cyclic products from (2E)-GDP.24

Thus, when incubated with (2Z)-series labeled GDP and FDP
(2a–d) both enzymes showed strong preference for cyclic pro-
ducts with only a weak tendency for isomerization as evi-
denced by reduced formation of acyclic products (Scheme 4).

Kinetic isotope effects. In previous studies we observed
changes in the product profiles of terpene synthases when
incubated with natural (2E)-(1a–d) isomers when these had
deuterium substitutions at sensitive branching positions
leading to induced isotope effects.14 Now we examined the
kinetic isotope effects associated with the (2Z)-(2a–d) sub-
strates. The relative overall rates of mono- and sesquiterpenes
with deuterated GDP and FDP (1a–d, 2a–d) produced by TPS4
and TPS5 and the apparent total rate isotope effects kH/kD are
given in Table 1. Because of the complex mono- and sesquiter-
pene biosynthetic pathways with multiple branching points
(Fig. 5), oxygenated cyclic volatiles were not considered.

The relative overall rates of reaction with (2Z)-[2H]-GDP 2a
and (2Z,6E)-[2H]-FDP 2c were used as reference for the determi-
nation of the apparent total rate isotope effects kH/kD for the
hexadeuterated (2Z)-substrates (2b, 2d). Thus the relative
overall rate of monoterpene formation with (2Z)-[2H6]-GDP 2b
decreased for TPS4 (11%) and TPS5 (16%). These rate suppres-
sions correspond to an apparent total rate isotope effect kH/kD
of 1.12 and 1.19, respectively. Furthermore TPS4 and TPS5
showed a depletion (17% and 28%, respectively) in the total
rates of sesquiterpene volatiles after incubation with (2Z,6E)-
[2H6]-FDP 2d, corresponding to an approximated apparent
total rate isotope effect kH/kD of 1.20 and 1.38. The observed
overall rate reductions after incubation with hexadeuterated
GDP (1b, 2b) and FDP (1d, 2d) primarily result from induced
primary isotope effects. In contrast the labeling pattern of the

monodeuterated GDP (1a, 2c) and FDP (1a, 2c) had no direct
influence on the reaction mechanism, since the C–D-bond is
not cleaved during the entire cyclization cascade. Moreover,
the variations in the product profiles and the overall rates were
a result of apparent secondary isotope effects.

Isotope effects on product distributions. In order to investi-
gate the impact of the isotope sensitive branching on product
distributions, the olefinic products were quantified after incu-
bation of TPS4 and TPS5 with (2a–d) (Fig. 3, 4 and ESI†). The
primary kinetic isotope effects were calculated using the shift
in the product distribution after conversion of the unlabeled
substrate (used as reference) or the mono- or hexadeuterated
products according the following relationship:

kH
kD

¼ % comp: X
% comp: Y

� �
H
� % comp: X

% comp: Y

� �
D

ð1Þ

X and Y are pairs of cyclic products arising from a same
branched point.

As mentioned above, the oxygenated cyclic volatiles were
not considered in the present data.14 To estimate the weight of
this approximation, quantitative kinetic measurements were
carried out. Since TPS4-B73 and TPS5-Delprim exhibit similar
basic features, only deuterium isotope effects on the catalytic
activity of TPS4 were evaluated using the noncompetitive
method. Both unlabeled (2E,6E)-FDP and (2E,6E)-[2H6]-FDP 1d
substrates were used in two independent enzyme assays. Stan-
dard enzyme assays were performed in triplicate with aliquots
of the same enzyme extracts under saturated substrate con-
ditions. A decrease of 13% (relative to the reference substrate)
of the maximal rate for sesquiterpene formation was observed
when (2E,6E)-[2H6]-FDP 1d was incubated with TPS4, while
similar Km were obtained for both substrates. Since the kinetic
experiments were performed using the same enzyme extract,

Table 1 Effect of the degree of labeling (deuterium substitution) on the
total rate of monoterpene and sesquiterpene formation resulting from
incubations of deuterated GDP and FDP with TPS4-B73 and TPS5-
Delprim from maize (Zea mays)

Substrate

TPS4-B73 TPS5-Delprim

Relative ratea

(%) kH/kD
Relative ratea

(%) kH/kD

(2E)-[2H]-GDP 1a 101.09 ± 0.45 ∼1b 99.98 ± 0.84 ∼1b
(2E)-[2H6]-GDP 1b 85.06 ± 0.84 1.17b 75.02 ± 0.78 1.33b

(2Z)-[2H]-GDP 2a 132.25 ± 1.18 — 135.75 ± 0.63 —
(2Z)-[2H6]-GDP 2b 117.72 ± 1.67 1.12c 114.38 ± 1.55 1.19c

(2E,6E)-[2H]-FDP 1c 106.21 ± 6.95 ∼1b 101.30 ± 1.11 ∼1b
(2E,6E)-[2H6]-FDP 2d 80.95 ± 7.55 1.23b 79.65 ± 1.94 1.25b

(2Z,6E)-[2H]-FDP 2c 297.91 ± 2.59 — 298.14 ± 1.69 —
(2Z,6E)-[2H6]-FDP 2d 248.75 ± 2.63 1.20c 215.20 ± 4.58 1.38c

a Relative overall rates compared to those of incubation with unlabeled
(E)-GDP or (E,E)-FDP substrates (set at 100). Each experiment was run
by the mean of three to six independent replicates. b Apparent total
rate isotope effects compared to those of incubation with unlabeled
(E)-GDP or (E,E)-FDP substrates. c Apparent total rate isotope effects
compared to those of incubation with (2Z)-[2H]-GDP or (2Z,6E)-[2H]-
FDP substrates. Note: oxygenated cyclic volatiles not considered.
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the total enzyme concentration [ET] was identical for both
assays. Therefore, the turnover number (kcat) of the enzyme,
usually defined as the ratio of Vmax/[ET], can be approximated
to Vmax. The apparent total rate isotope effect kH/kD, deter-
mined from the maximal rates, equals 1.15. As discussed
before, similar results were obtained when the oxygenated
cyclic volatiles were not considered (19% decrease in the vola-
tile production corresponding to a kH/kD = 1.23) and justify the
approximation made above.

Monoterpene product distribution

Within a series (2E (1a–b) or 2Z (2a–b)) both cyclases showed
negligible changes in the formation of limonene, α-terpinolene
and α-terpineol (Fig. 3) independent of the degree of labeling
of the substrate used. Thus, minor kinetic isotope effects (KIE)
were measured after incubation of (2E)-[2H]-GDP 1a or (2E)-
[2H6]-GDP 1b in comparison to the unlabeled (2E)-GDP as well
as after incubation of hexadeuterated (2Z)-[2H6]-GDP 2b in
comparison to the monodeuterated analog (2Z)-[2H]-GDP 2a.
In contrast sabinene and α-thujene showed decreases associ-
ated with a corresponding increase in sabinene hydrate after
incubation with TPS4 and TPS5. The observed KIEs for the
sabinene and α-thujene deprotonation reactions were calcu-
lated from eqn (1). In case of substrates differing by only one
deuterium atom, the observed KIEs (kH/k1D)E were much

weaker (a range of kH/kD = 1.10–1.18). However, the observed
KIEs [(kH/k6D)E, (k1D/k6D)E or (k1D/k6D)Z], corresponding to a
difference of 5 to 6 deuterium atoms between the substrates,
lie in the range of kH/kD = 1.91–5.68. The interesting fact was
that the (2Z)-substrates (k1D/k6D)Z showed the lowest KIEs and
this effect was negligible when comparison is made with (2E)-
substrates.

Sesquiterpene product distribution

The same approach was used to evaluate the shift of products
after incubation with different FDP substrates (E (1c–d) and Z
(2c–d)) (Fig. 4). Despite the blend of volatiles being much
more complex than in the case of monoterpenes, isotope
effects on sesquiterpene volatiles can be observed after incu-
bation with deuterated substrates. The first set of sesquiter-
penes, comprising (S)-β-bisabolene, (E)-γ-bisabolene and
zingiberene, were not affected by the isotope sensitive branch-
ing experiments and minor changes in product formation
were observed after incubation with hexadeuterated substrates.

Fig. 3 Product distribution of main monoterpenes from incubations of
deuterated GDP (2Z)-[2H]-GDP (2a) and (2Z)-[2H6]-GDP (2b) with TPS4-
B73 and TPS5-Delprim from maize (Zea mays). (1) α-Thujene, (2) sabi-
nene, (3) β-myrcene, (4) limonene, (5) α-terpinolene, (6) linalool, (7)
α-terpineol.

Fig. 4 Product distribution of main sesquiterpenes from incubations of
deuterated FDP (2Z,6E)-[2H]-GDP (2c) and (2Z,6E)-[2H6]-GDP (2d) with
TPS4-B73 and TPS5-Delprim from Zea mays. Major sesquiterpene pro-
ducts: (1) 7-epi-sesquithujene, (2) sesquithujene, (3) (Z)-α-bergamotene,
(4) (E)-α-bergamotene, (5) sesquisabinene A, (6) sesquisabinene B, (7)
(E)-β-farnesene, (8) γ-curcumene, (9) zingiberene, (10) (S)-β-bisabolene,
(11) β-curcumene, (12) (E)-γ-bisabolene, (13) 7-epi-sesquithujene
hydrate, (14) sesquithujene hydrate, (15) (3R)-(E)-nerolidol.
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An important decrease in the formation of 7-epi-sesquithujene,
sesquithujene, sesquisabinenes A and B and (E)- and (Z)-α-ber-
gamotene isomers were observed from (2E,6E)- or (2Z,6E)-
[2H6]-FDP (1d or 2d) (10–64% with TPS4 and 26–61% with
TPS5, in comparison with unlabeled (2E,6E)-FDP or (2Z,6E)-
[2H]-FDP 2c, respectively). This rate suppression was coupled
with a corresponding enhancement in the formation rate of
β- and γ-curcumene isomers, sesquithujene hydrate and 7-epi-
sesquithujene hydrate (175–400% for TPS4 and 193–255% for
TPS5, in comparison with unlabeled (2E,6E)-FDP or (2E,6Z)-
[2H]-FDP 2c, respectively). Because of higher complexity
involved in biosynthesis of sesquiterpene volatiles as com-
pared to monoterpenes, only the observed KIEs for the depro-
tonation reactions leading to 7-epi-sesquithujene and
sesquithujene were determined. The corresponding KIEs (kH/
k1D)E were close to unity, demonstrating that the deuterium
label at C(3) had almost no influence on the reaction cascade.
The observed KIEs [(kH/k6D)E, (k1D/k6D)E or (k1D/k6D)Z] were in
the range of kH/kD = 1.38–4.08 for the terminating deprotona-
tion reaction leading to 7-epi-sesquithujene and kH/kD =
2.17–6.24 for the terminating deprotonation reaction leading
to sesquithujene. Again as observed with monoterpenes the
lowest KIEs ((k1D/k6D)Z) were calculated between (2Z)-substrates
and were much lower as compared with natural isomers. The
huge turnover difference and lower KIEs suggest that enzyme
is much more efficient when incubated with (2Z)-substrates
(2a–d) in spite of isotope effects.

β-Secondary KIEs and hyperconjugation

Terpene cyclization cascades catalyzed by cyclases involve the
internal additions to remaining double bond, hydride shifts or
rearrangements of highly reactive carbocations before their
ultimate quenching by deprotonation or nucleophile capture.
We had previously proposed12 a reaction mechanism for the
formation of mono- and sesquiterpene products by TPS4 and
TPS5 consistent with the carbocationic mechanisms described
for other sesquiterpene synthases.25 Stabilization of the carbo-
cationic intermediates is partly ensured by interactions with
the hydrophobic, aromatic-rich active-site of the enzyme (e.g.
π–cation interactions with aromatic residues of the active
site).26 Nevertheless, hyperconjugative interactions within car-
bocations themselves also play an important role in their stabi-
lity. In molecular orbital terms, hyperconjugation is described
as the interaction of the vacant p-type orbital on the cationic
center with adjacent C–H or C–C σ-bonds.20 Magnitude of this
hyperconjugative effect depends on the number of hydrogen
atoms attached to the carbon atom immediately adjacent to
the unsaturated system. Because the energy required for break-
ing a C–D bond is higher than that for a C–H bond, a C–D
hyperconjugation stabilizes an adjacent positive charge less
than a C–H hyperconjugation. Consequently, reactions in
which C–D bonds are broken proceed more slowly than reac-
tions in which C–H bonds are broken. Such hyperconjugative
weakening in intermediates due to isotope substitution
induces secondary kinetic isotope effects. In the present study,
these secondary KIEs combine with the primary KIEs and alter

the product distributions after isotopically sensitive branching
with both enzymes.

To illustrate the effects of hyperconjugation and the second-
ary KIEs, the case of (2Z)-[2H6]-GDP 2b is depicted in Fig. 5 as
a representative example. From (2Z)-[2H6]-GDP 2b (Fig. 5),
there is distinct lack of acyclic products due to the lack of an
isomerization step. The cyclization cascade is initiated by the
formation of the (S)- and (R)-terpinyl carbocations A1 and A2.
Deuterium isotope effects on the monoterpene product distri-
bution can rationalized in terms of hyperconjugation The posi-
tive charge is positioned far from the area of the deuterated
carbons, hence deprotonation or water capture terminating
steps leading to (S)-(−)-limonene and α-terpineol or α-terpino-
lene are not influenced by kinetic isotope effects. The minor
KIEs observed for limonene, α-terpinolene and α-terpineol
reflect the low destabilizing influence of the labeled carbon
center in the two α-terpinyl carbocations. From A1 and A2 the
cyclization cascade can proceed with the formation of carbo-
cation B followed by subsequent rearrangement into the ter-
tiary highly unstable carbocations C1 and C2. Here, the
positive charge is fully surrounded by deuterium atoms and
consequently less stabilized by C–H hyperconjugation than in
the corresponding unlabeled compound. This leads to com-
paratively higher deuterium isotope effects on the formation
of sabinene, sabinene hydrate and α-thujene. This leads to
decreased deprotonation and higher formation of sabinene
hydrate after capture by water molecule.

Similar considerations apply to the formation of sesquiter-
penes by maize TPS4 and TPS5. From (2Z,6E)-[2H6]-FDP 2d,
few acyclic products are formed and the cyclization cascade is
initiated by the formation of (S)- and (R)-bisabolyl cations.
These first carbocations can be directly deprotonated to
produce (S)-β-bisabolene without noticeable KIEs. These obser-
vations are consistent with the product distribution obtained
from isotopically sensitive branching experiments. Deuterium
isotope effects are less pronounced in the case of the mono-
deuterated analogue 2c vs. hexadeuterated analogue 2d since
the positive charge can at most be surrounded by only one
deuterium atom, with the other hydrogen atoms being able to
undergo C–H hyperconjugative interactions. Higher KIEs were
obtained for the formation of sesquithujene, 7-epi-sesquithu-
jene or sesquisabinenes A and B after incubation with the
hexadeuterated (2Z)-substrate (2d) since these products are
formed from carbocations that are fully surrounded by deuter-
ium labeled carbons. This results in higher KIEs as the final
product formation can only proceed via isotope labeled
centers. In case of bisabolyl carbocations, minor KIEs were
observed for β or γ-bisabolene formation because the positive
charge is not disturbed by the deuterium labeled carbon
center. Similarly, slight KIEs were observed for zingiberene
isomers because carbocations were not highly destabilized by
deuterium substitution. These experiments clearly show that
isotope effects follow the same patterns within both the geo-
metric isomers. Thus, (2Z) substrate geometry provides an
advantage in the early steps of reaction cascade that accounts
for higher turnover and selection towards cyclic products.
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A major determinant of product selectivity is the degree of
conformational flexibility of the substrate in the active site of a
terpene synthase. To explore the structural basis for the pro-
posed reaction mechanism of maize TPS4, we had modeled the
protein structure of this enzyme (TPS4) using the data available
for 5-epi-aristolochene synthase (TEAS).13 The active site cavity
of TPS4 is divided into two pockets by the G2 helix which
reaches slightly into the cavity. Previously, four of the amino
acids that make up the G2 helix were shown to have a major
impact on the product specificity of TPS4.12 Docking of the
(E,E)-FDP substrate showed that the olefin moiety of the FDP
substrate is located predominantly in one of the two pockets
(pocket I). The early steps of the catalytic sequence including
dephosphorylation, isomerization, and cyclization, up to the
formation of the bisabolyl carbocation, all take place in pocket-
I. When the bisabolyl carbocation adopts an alternate confor-
mation, it shifts to pocket II. Then, a variety of additional cycli-
zations, hydride shifts, and deprotonations occur in pocket II

leading to the formation of bicyclic products like 7-epi-ses-
quithujene. The energy requirement for the conformational
change that drives pocket shifting is likely to be very small
determined both by the chemical nature of the intermediate
and the surrounding amino acids.13 This structural feature of
having two pockets, is likely to be advantageous for initial inter-
actions of enzyme with the deuterated (2Z)-GDP and (2Z,6E)-
FDP tested in this study. Both of these have already undergone
isomerization around the C(2)–C(3) bond, so the only activity
left in pocket I is conversion to the corresponding carbocation.
After these 2Z substrates cross the small energy barrier to
pocket II, they are converted to a larger proportion of cyclic pro-
ducts than the (2E)-substrates. The enzyme likely has better
efficiency with (2Z)-substrates because of lower energy require-
ments, as substrates are directly cyclized after ionization. This
could explain not only the reduction in acyclic substrates and
smaller kinetic isotope effects, but also the availability of more
energy that can be utilized for processes in pocket II.

Fig. 5 Proposed reaction mechanism for the formation of monoterpenes by TPS4 and TPS5 from (2Z)-[2H6]-GDP (2b) and (2E)-[2H6]-GDP (1b).
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Recently, isotopically sensitive branching experiments have
been used to identify the carbocation cascade reaction leading
to the tricyclic sesquiterpene pentalenene which was first pre-
dicted using quantum chemical calculations.27 Deuterium
isotope effects have also been used to study the reaction kine-
tics of initial dissociation of pyrophosphate moiety in sesqui-
terpene cyclization by tobacco epi-aristolochene synthase and
monoterpene cyclization by pinene synthases from Salvia
officinalis.15c,28 In this study we have utilized isotope sensitive
branching experiments to study the effects of alternate sub-
strate geometry around the C(2)–C(3) double bond on volatile
production in multiproduct terpene synthase enzymes. The
observation of increased turnover of cyclic products with (2Z)-
substrate geometry may be useful in direction terpene synthase
reaction cascades towards desired cyclic products.

Conclusion

In this work we investigate the effects of alternate substrate
stereochemistry on the reaction mechanism of two maize mul-
tiproduct synthases that isomerize the C(2)–C(3) π bond of
(2E,6E)-FDP via an NDP intermediate. We were interested in
the impact of geometry as well as isotope effects on the
product distribution of multiproduct enzymes. There was
indeed major influence of the (2Z)-isomers on the enzymatic
cascade as confirmed by deuterium labeling of products. The
product distribution results showed a strong preference for
cyclic products as a result of the alternate C(2)–C(3) geometry,
indicating the rate limiting effects of the isomerization step in
the natural biosynthesis of terpenes. There was also a major
impact on efficiency with higher turnover and lower kinetic
isotope effects observed with (2Z)-isomers as compared with
natural (2E)-substrates. This can rationalized in terms that
availability of a preferable conformer and lower energy require-
ments which increases the efficiency of catalysis. This strong
preference for cyclic products and huge turnover can be
exploited to direct biosynthesis by certain terpene synthases
already known for their catalytic promiscuity.
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Inhibition of a multiproduct terpene synthase
from Medicago truncatula by 3-bromoprenyl
diphosphates†

Abith Vattekkatte,a Nathalie Gatto,a Eva Schulze,b Wolfgang Brandtb and
Wilhelm Boland*a

The multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula catalyzes the conversion of

farnesyl diphosphate (FDP) into a complex mixture of 27 terpenoids. 3-Bromo substrate analogues of

geranyl diphosphate (3-BrGDP) and farnesyl diphosphate (3-BrFDP) were evaluated as substrates of

MTPS5 enzyme. Kinetic studies demonstrated that these compounds were highly potent competitive

inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. Since there is a lack of knowledge

about the crystal structure of multiproduct terpene synthases, these molecules might be ideal candidates

for obtaining a co-crystal structure with multiproduct terpene synthases. Due to the structural and

mechanistic similarity between various terpene synthases we expect these 3-bromo isoprenoids to be

ideal probes for crystal structure studies.

Terpenes constitute the largest and most diverse class of plant
natural products with more than 55 000 members.1 They serve
many biological functions such as hormones, structural com-
ponents of membranes, attractants for pollinators, toxins,
feeding or as oviposition deterrents to insects.2–5 Despite their
enormous structural variety, all terpenes are essentially
derived from simple linear precursors such as geranyl diphos-
phate (GDP), farnesyl diphosphate (FDP), and geranylgeranyl
diphosphate (GGDP). The cyclization of GDP to monoterpenes,
FDP to sesquiterpenes and GGDP to diterpenes is accom-
plished by enzymes known as terpene synthases. Structurally,
sesquiterpenes are one of the most diverse classes of terpenes
isolated from plants, fungi, bacteria, and marine invert-
ebrates.6 All sesquiterpenoids known to date are based on 300
basic hydrocarbon skeletons; these skeletons are generated by
cyclization of FDP by sesquiterpene synthases.7

Sesquiterpene synthases are capable of catalyzing the for-
mation of some of the most complex carbon–carbon bond
forming reactions found in nature.8 Despite of their promiscu-
ous nature, active site of these synthases strictly control the
reaction pathway by directing the way isoprenoid chain folds,
shielding the cation from early nucleophilic attack, and
guiding carbocation cascade to its final products by quench-

ing. Even in sesquiterpene synthases, while some generate a
single product, others produce complex bouquets of acyclic
and cyclic products from a single precursor.9 The δ-selinene
synthase and the γ-humulene synthase from Abies grandis hold
the current record for producing 52 and 34 different sesquiter-
penes, respectively.10 The lack of crystal structures of multipro-
duct terpene synthases, has led to great interest in the three-
dimensional contour of the active site which retains such
control over the reaction cascade. This knowledge is pivotal as
it forms the mechanistic basis for the varying selectivity result-
ing in different conformations of the reactive cationic inter-
mediates. Earlier we had reported that a multiproduct terpene
synthase MtTPS5 (Fig. 1) from Medicago truncatula produces
27 products from FDP.11,12

Fig. 1 GC chromatogram of sesquiterpenoids formed on incubation of
FDP with MtTPS5 from M. truncatula.

†Electronic supplementary information (ESI) available: Experimental procedure
and spectra are included. See DOI: 10.1039/c5ob00506j

aDepartment of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology,

Hans-Knöll-Strasse 8, D-07745 Jena, Germany. E-mail: boland@ice.mpg.de
bDepartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry,

Weinberg 3, 06120 Halle (Saale), Germany
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We had also previously proposed the complex mechanistic
pathway controlled by the MtTPS5 using a combination of
techniques including labelling experiments.11 In brief, the
reaction cascade is initiated by the formation of a highly reac-
tive farnesyl carbocation by the disassociation of diphosphate
moiety. The C1 to C11 ring closure affords the humulyl cation,
which generates terpenoids such as α-humulene and β-caryo-
phyllene (Scheme 1). Most of the products require the initial
C1 to C10 closure generating the germacren-11-yl cation which
is further cyclized to products like germacrene D and germa-
crenyl based alcohols. The other key cationic intermediates are
(2Z,6E)-germacren-1-yl cation and cadinan-7-yl cation, leading
to about 80% of products. These intermediates are generated
by isomerization of FDP to nerolidyl diphosphate (NDP). Even
alteration of a single amino acid has a dramatic effect on the
product profile; alteration of tyrosine to phenylalanine in
MtTPS5 prevents the formation of a key intermediate via proto-
nation of germacrene D. The tight control of the enzyme leads
to optically pure products resulting from cyclization steps and
hydride shifts. Hence, it is of vital importance to understand
the electrostatic interactions within active site. One possibility
is to link the structure with complex catalytic cascade by using
alternate substrates.13

Substrate analogues have been used successfully to probe
the specificity of the enzymes and obtain a substrate-bound
crystal structure of enzymes.14–16 Natural biosynthesis allows
these substrates to carry only methyl substituents, but syn-
thetic approaches can provide various analogues of the natural
substrates. Especially, substitution with sulphur has been used
quite successfully for co-crystallization with different terpene
synthases.17,18 In a recent example from Heaps et al.,14 chlori-

nated substrates have been shown to be alternative co-sub-
strates for farnesyl diphosphate synthase and also acting as
inhibitors when both substrates were chlorinated. Fluorinated
substrates have been successfully used to study the cyclization
mechanism of several terpene synthases, in particular the aris-
tolochene synthases.19 Thus, non-natural substrates have
shown great potential as substrates or inhibitors to probe
mechanisms and can be further utilized for the investigation
of multiproduct terpene synthases.

Based on the information obtained from mechanistic
studies of MtTPS5,11 we have designed a set of functional ana-
logues of prenyl diphosphates for this enzyme that could
destabilize the developing allylic carbocation. The GDP ana-
logue (3-BrGDP) and FDP analogue (3-BrFDP) (Fig. 2) were con-
sidered because of their geometrical similarity and virtually
identical van der Waals radius and volume (ca. 2.0 Å,20 cf. also
Fig. 6) with the methyl group at C3 position of natural sub-
strates. The highly electronegative bromine atom can strongly
influence the stability of the neighboring carbocationic species
but imposes no additional steric effect in comparison with the
corresponding natural substrates. These analogues could
either provide novel sesquiterpenes that could be further uti-
lized to investigate mechanistic aspects of the MtTPS5, or they
could act as potent inhibitors of MtTPS5. In case of inhibition
it can be used to provide an active site resolved crystal struc-
ture like in the case of aristolochene synthase with farnesyl-S-
thiolodiphosphate.21 There is a lack of definitive understand-
ing about the structure of multiproduct terpene synthases due
to the absence of their crystal structures. These easy to syn-
thesize inhibitors with identical sterical features could prove
to be valuable tool for understanding the complex cyclization
sequences in the active sites of these terpene cyclases.

Results and discussion
Synthesis

In order to investigate the potential of modified prenyl diphos-
phates, we have synthesized 3-bromo analogs of GDP
(3-BrGDP) and FDP (3-BrFDP) as shown in Scheme 2. Alkyl-
ation of the THP ether of propargyl alcohol with 1-bromo-
3-methylbut-2-ene (1a) and (E)-1-bromo-3,7-dimethylocta-2,6-
diene (1b) provided the alkynes (2a,b) that were deprotected
(MeOH, PPTS) to the propargyl alcohols (3a) and (3b).
Reduction of the alcohols (3a) and (3b) with Red-Al, followed
by reaction with N-bromosuccinimide gave the 3-bromo
(E)-allylic alcohols (4a) and (4b). These alcohols were converted
to 3-BrGDP (5a) and 3-BrFDP (5b) by sequential treatment with

Scheme 1 Simplified cyclization pathways of FDP with MtTPS5.

Fig. 2 GDP analogue (3-BrGDP) and FDP analogue (3-BrFDP).
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N-chlorosuccinimide and tris-(tetrabutyl-ammonium) hydro-
gen pyrophosphate in acetonitrile to yield the corresponding
3-bromoprenyl diphosphates.

Enzymatic characterizations of substrates

Inhibition studies. To test whether MtTPS5 would accom-
modate the replacement of a methyl group with a bromine
atom, the terpene synthase from Medicago truncatula was incu-
bated with the brominated analogues 3-BrGDP (5a) and
3-BrFDP (5b). Standard assays contained purified protein in
assay buffer with substrate. The reaction mixture was covered
with pentane containing dodecane as an internal standard to
allow the quantification of reaction products. After being incu-
bated for 90 min at 30 °C, the reaction was stopped and frozen
in liquid nitrogen, and the pentane layer removed. The terpe-
noid profiles resulting from the incubation experiments were
analyzed by gas chromatography and compared to the profiles
resulting from (2E)-GDP and (2E,6E)-FDP with the same
enzyme. Results obtained by incubating both 3-BrGDP (5a)
and 3-BrFDP (5b) with MtTPS5 showed no detectable for-
mation of products. Longer incubation times (up to 24 hours)
along with increased substrate and enzyme concentrations
neither gave detectable amounts of brominated products
or any other terpene-based derivatives. This indicated that
enzyme is not able to initiate its catalytic cascade using
3-bromo substrates.

Both 3-BrGDP (5a) and 3-BrFDP (5b) were then assayed as
inhibitors of the MtTPS5. With immediate mixing of enzyme,
substrate, and inhibitor (no preincubation of enzyme and
inhibitor), 3-BrGDP (5a) and 3-BrFDP (5b) were found to
inhibit the MtTPS5 (Fig. 3). After preincubation for 1 h, stan-
dard assays containing protein in assay buffer with inhibitor
and with natural substrate were performed (Fig. 3). The Ki,
which was measured against MtTPS5 with 3-BrFDP (5b), was
determined to be 1.54 ± 0.21 μM and Ki with BrGDP (5a) was
determined to be 1.25 ± 0.23 μM. Additional preincubations
with the enzyme for 1, 2, 4 and 12 h prior to substrate addition
at t = 0, showed no increase in potency of inhibition, demon-
strating a fast onset of the inhibition of the enzyme.

Reversibility of inhibition. To determine whether the mech-
anism of inhibition of MtTPS5 by these compounds is rapidly
reversible, slowly reversible, or irreversible, the activity was
evaluated using a preincubation/dilution assay.22 To test the
reversibility of the inhibition with 3-BrFDP (5b), MtTPS5 at

Scheme 2 Synthesis of 3-BrGDP (5a) and 3-BrFDP (5b).

Fig. 3 Double reciprocal plots of initial rates versus the concentration
of substrate for MtTPS5 catalyzed turnover of FDP in the presence of
3-BrGDP (5a) and 3-BrFDP (5b) are shown on panels A and B respectively.
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100-fold (its final assay concentration), and inhibitor at 10-fold
its calculated IC50, a condition is created where >90% of the
enzyme should be in an enzyme-inhibitor complex. Upon 100-
fold dilution of the enzyme pre-incubated mixture of enzyme
inhibitor complex and addition to assay buffer with substrate
FDP, product formation was inhibited immediately after the
addition of substrate because almost all the inhibitor 3-BrFDP
(5b) was bound to the enzyme. Following the preincubated
enzyme-inhibitor reaction condition for activity in separate
assays, approximately 11% of the enzymatic activity in the
inhibited reaction was returned after 50 minutes (Fig. 4). After
150 minutes, the rate of product formation for the pre-incu-
bated reaction was about 5 times greater than the initial rate
of product formation, showing that the inhibitor was being
released from the enzyme-inhibitor complex and enzymatic
activity was indeed recovering. Accordingly, 3-BrFDP (5b) acts
as a very slow reversible inhibitor of the MtTPS5.

Ab initio calculations. This established that 3-BrGDP (5a)
and 3-BrFDP (5b) inhibit the cyclization process of MtTPS5. It
has already been shown that the allylic and vinyl fluoro substi-
tuents also have a retarding effect on the reactivity of various
fluoro geranyl methanesulfonates.16,23 The bromo substituent
at C3 has a large inductive electron withdrawing effect on the
electron density of the adjoining double bond which evidently
decreases its π basicity. This effect dramatically alters the
stability of the allylic carbocations during the activation of the
diphosphate substrate. Thus, for all enzymes proceeding
through particular type of carbocationic intermediates as
shown in Fig. 5, 3-bromo analogues would be poor substrates.

To investigate the influence of the 3-bromo substitution on
the destabilization of the intermediate allyl cation, reaction
energies calculations were carried out using TURBOMOLE24

using DFT (B3-LYP25,26) with the def-TZVPP basis set.27 These
calculations were performed for the corresponding cleavage
of dimethylallyl diphosphate (DMAPP) and compared with
3-bromoallyl diphosphate (3-BrDMAPP) (Fig. 5). Whereas
the cleavage of DMAPP requires only 31.9 kcal mol−1, the
corresponding 3-bromo analogue requires much more energy

(123.5 kcal mol−1) and is clearly not energetically favorable. In
the case of longer isoprenyl chains like GDP and FDP, the
resulting carbocations are stabilized by specific cyclizations
guided by the enzymatic active site. However, in case of
3-bromo analogues the huge endothermic energy required for
the formation of the intermediate allyl cation prevents its for-
mation, and hence, subsequent energy gain by cyclization is
not possible. However, 3-Br GDP and 3-Br FDP are able to bind
to the enzyme because there is no steric difference on compar-
ison with the natural substrates. Since the dissociation of the
diphosphate moiety is the first step, common to all prenyl
diphosphate based terpenoid synthases and cyclases, we
expect this simple analogues as a broadly applicable inhibi-
tors. Preliminary experiments with a terpenoid synthase from
insects isoprenyl diphosphate synthase 1 (PcIDS1)28 from
Phaedon cochleariae showed no catalytic formation of GDP
with the incubation of substrates DMADP and IDP.

Molecular mechanics simulations

In the case of the MtTPS5 enzyme, the three-dimensional
contour of the active site forms the structural basis of varying
selectivity that allows different conformations of the reactive
cationic intermediates. Since the crystal structure for MtTPS5
is not yet known, we earlier compared the structure with the
5-epi-aristolochene synthase (TEAS) from Nicotiana tabacum
that transforms FDP to 5-epi-aristolochene through the stable
intermediate germacrene A which is also an intermediate of
the MtTPS5 catalyzed reaction sequence.7 Starting from the
TEAS crystal structure, Starks et al.29 suspected that the
hydroxyl group of tyrosine in the interaction with the two
aspartate participates as a proton donor in the activation of
germacrene A and forms a catalytic triad.29 A comparison of
the TEAS amino acid sequence shows that all three amino
acids were conserved in MtTPS5 as well. This sequence simi-
larity is can be used to our advantage to model the active site
interactions leading to products.

Recently, the co-crystal structure of aristolochene synthase
(PDB code: 4KUX) from Aspergillus terreus with a bound FSDP,
a stable FDP analogue was reported. Despite differences in
sequence alignment, the discussed triad the 84DDXXE motif
essential for the diphosphate recognition corresponds with a

Fig. 5 Ab initio energy calculations for cleavage of DMAPP and
3-BrDMAPP.

Fig. 4 Reversibility of Inhibition of MtTPS5 by 3-BrFDP (5b).
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similar motif 306DDXXD in MtTPS5. Thus, there is more likely
to be comparable binding of the substrate or inhibitor is more
likely. This is further supported when analyzing the active site
(Fig. 6) of 4KUX with bound FSDP. The influence of the
bromine substitution was analyzed first by replacement of the
sulfur in FSDP with oxygen to form FDP and further modifying
the ligand to 3-BrFDP (5b). The active site with ligands was
energy minimized within an area of 7 Å around the ligand
using the YASARA package.30 There were no changes in key
structural features in case of interaction between the catalytic
triad and C3 methyl group placed in the hydrophobic area
created by F147 and partly by L80 (Fig. 4). The sequence align-
ment with MtTPS5 shows that both F147 and L80 are super-
posed with F374 and L302, respectively, Thus, almost identical
hydrophobic interactions especially of the 3-Me or 3-Br moiety
in MtTPS5 can be expected. The folding pattern of both sub-
strates in the active site might be identical and the dis-
sociation of the diphosphate moiety should lead to initiation
of formation of cyclic products. To check if the bromine is
able to exhibit special stabilizing interactions, distances to
spatially neighboring atoms were measured. Except of the
mentioned interactions with the side chains of F147 and L80

there is only one carboxyl oxygen atoms of D84 in a distance of
3.9 Å which is, however, too large for significant stabilizing
interactions. This distance is larger than 3.4 Å, the sums of the
respective van der Waals radii, and also the C–Br–O angle (50°)
is not appropriate to lead to an ideal scenario for the for-
mation of an attractive Br–O halogen bond.31 Thus, we can
conclude that natural FDP and 3-BrFDP (5b) bind to the active
site in identical ways, and due to higher endothermic energy
requirements the cleavage to a carbocation intermediate is not
possible leading to absence of products.

Conclusion

The 3-bromo substituted GDP (3-BrGDP) and FDP (3-BrFDP)
were evaluated as substrates or inhibitors for the MTPS5
enzyme. The brominated analogues were not accepted as
natural substrates for MtTPS5 and no product formation was
observed. Our kinetic analyses demonstrated that these com-
pounds were highly potent, acting as linear competitive inhibi-
tors of the MtTPS5 enzyme, with fast binding and slow
reversibility. Since there is a lack of knowledge about the
crystal structure of multiproduct terpene synthases, these
molecules would be ideal candidates for obtaining a co-crystal
structure with e.g. the MtTPS5 from M. truncatula. They would
not only support the co-crystallization process, but also give
information on the conformation of the substrate bound in
the crystal structure which is imperative in determining the
precise nature of mechanism catalyzed by the enzyme. Due to
the structural similarity between various terpene synthases,
and similarity in behavior in active site, we expect these
3-bromo isoprenoids as ideal probes for crystal structure
studies. The bromo substituent provides additional advantage
to determine the absolute configuration based on the anoma-
lous dispersion effect.32,33

Experimental
General methods

Reactions were performed under Ar. Solvents were dried
according to standard procedures. 1H, 13C and 31P NMR were
recorded at 400 MHz. Chemical shifts of 1H, 13C and 31P NMR
are given in ppm (δ) based on solvent peaks. CDCl3: 7.27 (1H
NMR) and 77.4 ppm (13C NMR). D2O/ND4OD: 4.79 (1H NMR);
13C NMR and 31P NMR were referenced to external standard
3-(trimethylsilyl)-propionic acid-d4 sodium salt (TSP; 3% in
D2O) and phosphoric acid (H3PO4, 10% in D2O), respectively.
IR: Bruker Equinox 55 FTIR spectrophotometer.

Protein expression

Strains of E. coli (BL21-CodonPlus(DE3)) with recombinant
vectors of MtTPS512 and N-terminal His8-tag were grown to
A600 = 0.5 at 37 °C in LB-medium with kanamycin (50 μg ml−1).
After induction with isopropyl β-D-1-thiogalactopyranoside
(IPTG), cultures were shaken overnight at 16 °C. Cells were

Fig. 6 Docking arrangement of FDP (A) and 3-BrFDP (5b) (B) in the
active site of the X-ray structure of aristolochene synthase (4KUX). The
van der Waals radii are shown by a cloud around CH3 and Br groups.
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harvested by centrifugation and the pellet was resuspended in
lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imida-
zole, pH 8.0) and incubated with lysozyme. After disruption of
the cells by sonication, cell debris were removed by centrifu-
gation. The supernatant was passed over a column of Ni2+-
NTA-Agarose (QIAGEN, Germany), equilibrated with lysis
buffer. After being washed twice with washing buffer (50 mM
NaH2PO4, 300 mM NaCl, 20 mM imidazole), the protein was
eluted with elution buffer (50 mM NaH2PO4, 300 mM NaCl,
250 mM imidazole). The purified protein was desalted into a
TRIS-buffer (50 mM TRIS, pH 7.5, 10 mM NaCl, 10% glycerol)
by passing through a NAP 25 column (Amersham Biosciences,
Sweden), diluted to reach a concentration of 0.2 and 1 mg
ml−1 and stored at −20 °C.

Assay for terpene synthase activity

Standard assays contained 600 nM purified protein in assay
buffer (25 mM HEPES, pH 7.5, 10% glycerol, 10 mM MgCl2,
1 mM DTT) with 50 μM substrate in 1 mL final volume. The
reaction mixture was covered with 100 μL of pentane (1 ng
μL−1 of dodecane as an internal standard) to trap the reaction
products. After being incubated for 90 min at 30 °C, the reac-
tion was stopped by vortexing for 20 s. The whole mixture was
frozen in liquid nitrogen, and the pentane layer was removed
after thawing and analyzed by GC-MS.

Gas chromatography

GC-MS analysis was performed on an instrument equipped
with a ZB-5 capillary column (0.25 mm i.d. × 15 m with
0.25 μm film). One microliter of the sample was injected in
splitless mode at injection port temperature of 220 °C. The
oven temperature was kept at 50 °C for 2 min followed by a
ramp of 10 °C min−1 to 240 °C followed by an additional ramp
of 30 °C min−1 to 280 °C and finally kept for 2 min. Helium at
a flow rate of 1.5 mL min−1 served as carrier gas. Ionization
potential was set to 70 eV, and scanning was performed from
40 to 250 amu. Compounds were identified by comparing
their mass spectra and Kováts indices (retention indices) with
published reference spectra (Garms et al.11) For quantification
of enzyme products, the compounds were first separated on a
gas chromatograph (H2 carrier gas 1.5 mL min−1, injection
volume 2 μL) under the conditions described above and sub-
sequently analyzed on a flame ionization detector (FID)
(250 °C). Correction of the different response factors of sesqui-
terpene hydrocarbons and alcohols was achieved using
calibration curves obtained from samples with different con-
centrations of (E)-β-caryophyllene and torreyol. The average
and standard deviations of relative ratios were determined by
at least four independent samples setting the sum of identi-
fied compounds to 100%.

Kinetic characterization of 3-bromo analogues as inhibitors
of MtTPS5

For kinetic studies, terpene synthase activity was determined
by monitoring the decrease in absorbance at 340 nm as a
consequence of the consumption of NADPH coupled to the

release of pyrophosphate. Pyrophosphate was detected using a
coupled-enzyme system supplied as a pyrophosphate reagent
by Sigma-Aldrich. This reagent was reconstituted in buffer
(16.7 mg in 1 ml 10 mM Tris-HCl, 10 mM MgCl2, 1 mM β-mer-
captoethanol, pH 8). Assay reaction mixtures were prepared in
96-well microplates with 50 μl of pyrophosphate reagent, 90 μl
of buffer (0–16 μM inhibitor, 25 mM HEPES, pH 7.5, 10% gly-
cerol, 10 mM MgCl2, 1 mM DTT) and 10 μl of various concen-
trations of FPP. Similarly, a blank reaction mixture without
FPP (instead, 10 μl of buffer was used) was prepared, and both
reaction mixtures were preheated at 30 °C for 5 min. Next, 5 μl
of enzyme (0.2 mg ml−1) was added to both mixtures to start
the reactions. The activity was determined as the difference
between the decrease in absorbance per minute of the sample
and of the blank.

Apart from spectrophotometry based measurements, Assays
(1 ml final volume) were initiated by addition of purified
MTTPS5 solution (600 nM). Assays contained 0.1–5 μM farne-
syl diphosphate, 0–3 μM inhibitor, 25 mM HEPES, pH 7.5,
10% glycerol, 10 mM MgCl2, 1 mM DTT and were warmed to
30 °C prior to addition of enzyme solution. After incubation
for 90 min. each assay was stopped by addition of 100 mM
EDTA and 100 μL of pentane containing 1 ng μL−1 of dodecane
as an internal standard to trap the reaction products. After vor-
texing for 10 s, the pooled hexane extracts were vortexed with
silica (50 mg) the sample was centrifuged at 13 000 rpm for
5 min and then the hexane was decanted into a vial and the
activity quantified. KM and KM(app) values were determined by a
nonlinear fit of the data to the equation V = Vmax[S]/(KM + [S])
using Origin 8G. Mode of action of the inhibitors was deter-
mined by examination of double reciprocal plots of 1/v versus
1/[S]. Ki values were determined using plots of [I] versus KM(app)

once each inhibitor was observed to be competitive.

Modelling studies

Ab initio calculations. To investigate the influence of the
3-Br methyl substitution on the (de)stabilization of the inter-
mediately formed allyl cation energy optimizations were
carried out with TURBOMOLE24 using DFT (B3-LYP25,26) with
the def-TZVPP basis set27 for the cleavage of dimethyl allyl
diphosphate in comparison to 3-bromo methyl allyl diphos-
phate as model compounds.

Molecular mechanics simulations. The binding mode of
FPP was further analyzed using an aristolochene synthase
from Aspergillus terreus. A full crystal structure with bound FPP
analogue is available of this enzyme (4UKX).21 Both enzymes,
MtTPS5 and the aristolochene synthase, bind FPP and most
likely also 3Br-FPP. The influence of the bromine substitution
was analyzed by modifying the ligand and comparing the
binding after energy minimization. Therefore, the crystal struc-
ture was used, hydrogens were added and the FPP analogue
was changed to FPP (i.e. the sulfur atom at the diphosphate
moiety was changed to oxygen) and the area of 7 Å around the
ligand was minimized using the yasara 2 force field of the
YASARA package.30 The binding of the 3Br-FPP was similarly
modelled. The methyl group at position 3 of the FPP was con-
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verted into bromine and 7 Å around the ligand was minimized
using the yasara 2 force field. The comparison of the two
binding modes revealed FPP and 3Br-FPP could be bound
similar by the enzyme.

Synthetic procedure

2-((7-Methyloct-6-en-2-yn-1-yl)oxy)tetrahydro-2H-pyran (2a).34

The alkyne (2-(prop-2-yn-1-yloxy)tetrahydro-2H-pyran) (2.00 g,
14.3 mmol) was dissolved in dry DMI (20 ml). The solution
was cooled to 0 °C, and n-butyllithium (1.39 M in hexanes,
10.3 ml, 14.3 mmol) was added by syringe over 15 min. Then
stirred for 30 min, and further the 5-bromo-2-methylpent-
2-ene 1a (2.00 g, 9.52 mmol) in dry DMI (10 ml) was added.
The reaction was warmed to room temperature and stirred for
5 h. Sat. aq. NaCl (50 ml) was added and the solution was
extracted with petroleum ether (3 × 50 ml). The combined
organic phase was dried (MgSO4) and concentrated in vacuo to
give yellow oil which was heated to 70 °C under vacuum to
distill off most of the excess alkyne. The remaining oil was
chromatographed on silica gel (9 : 1 hexanes–diethyl ether) to
give 1.264 g of 2a (63%) as a colorless oil data: (lit.34) 1H NMR
(400 MHz, CDCl3) δ: 5.12–5.14 (1H, m), 4.79 (1H, t, J = 3.3 Hz),
4.22 (2H, app q), 3.79–3.85 (1H, m), 3.49–3.53 (1H, m),
2.17–2.21 (4H, m), 1.68 (3H, s), 1.60 (3H, s), 1.50–1.91 (6H, m);
13C NMR (400 MHz, CDCl3) δ: 132.9, 122.8, 96.5, 86.4, 75.7,
61.9, 54.5, 30.2, 27.3, 24.6, 25.3, 19.3, 19.1, 17.7. IR (neat)
cm−1: ν 2942, 2870, 1441, 1117, 1024.

(2E)-2-((7,11-Dimethyldodeca-6,10-dien-2-yn-1-yl)oxy)tetrahydro-
2H-pyran (2b). First step in synthesis (2E)-2-((7,11-dimethyl-
dodeca-6,10-dien-2-yn-1-yl)oxy)tetrahydro-2H-pyran (2b) was
the conversion of homogeraniol to (2E)-9-bromo-2,6-dimethyl-
nona-2,6-diene (1b) by following procedure of Oehlschlager
et al.35

(2E)-9-Bromo-2,6-dimethylnona-2,6-diene (1b).35 To an ice-
cooled solution of triphenylphosphine (1.5 g, 5.5 mmol) in
10 mL of CH2C12, bromine was added dropwise until a perma-
nent yellow color appeared. A few milligrams of triphenylphos-
phine were added to consume excess Br2 and then pyridine
(0.8 mL, 10 mmol) was added and stirred for 10 min. Homo-
geraniol (0.85 g, 5 mmol) in 5 mL of CH2C12 was added drop-
wise and the reaction was stirred for further 90 min. The
sample was concentrated and remainder precipitate was
washed with pentane (4 × 50 mL), and the combined pentane
extracts were washed with 1 N HCl (25 mL) and brine (2 ×
30 mL), dried with MgSO4, filtered and concentrated in vacuo.
Distillation gave(2E)-2-((7,11-dimethyldodeca-6,10-dien-2-yn-1-
l)oxy)tetra tetrahydro-2H-pyran (2b) (0.80 g, 71%): bp 90–92 °C
1H NMR (400 MHz, CDCl3) δ: 5.03–5.27 (m, 2H), 3.27–3.52 (t,
2H, C1-CH2, J = 6.66 Hz), 2.39–2.74 (q, 2H, C2-CH2, J = 6.67
Hz), 1.96–2.13 (m, 4H), 1.69 (s, 3H) 1.62 (s, 6H); MS, m/z (rel.
intensity), 232 (10.5), 230 (11.7), 217 (5.8), 215 (8.2), 189 (28.2),
187 (30.5), 123 (18.8), 69 (100).

(2E)-2-((7,11-Dimethyldodeca-6,10-dien-2-yn-1yl)oxy)tetra hydro-
2H-pyran (2b). The alkyne (2-(prop-2-yn-1-yloxy)tetrahydro-2H-
pyran) (2.00 g, 14.3 mmol) was dissolved in dry DMI (20 ml).
The solution was cooled to 0 °C, and n-butyllithium (1.39 M in

hexanes, 10.3 ml, 14.3 mmol) was added slowly by syringe over
15 min. The reaction was stirred for 30 min, and then (2E)-9-
bromo-2,6-dimethylnona-2,6-diene (1b) (2.76 g, 9.52 mmol) in
dry DMI (10 ml) was added. The reaction was warmed to room
temperature and stirred for 5 h. Sat. aq. NaCl (50 ml) was
added and the solution was extracted with petroleum ether
(3 × 50 ml). The combined organic phase was dried (MgSO4)
and concentrated vacuo to give yellow oil which was heated to
70 °C under vacuum to distill off most of the excess alkyne.
The remaining oil was chromatographed on silica gel
(9 : 1 hexanes–diethyl ether) to give 1.051 g of 2a (51%) as a col-
orless oil data: (lit.36) 1H NMR (400 MHz, CDCl3) δ: 5.18 (s,
1H), 5.07 (s, lH), 4.76 (s, lH), 4.2 (t, J = 2 Hz, 2H), 3.6 (m, 2H),
2.9 (d, J = 7 Hz, 2H), 1.98 (m, 4H), 1.62 (m, 1H); 13C NMR
(400 MHz, CDCl3) δ: 135.9, 132.6, 122.8, 123.5, 100.2, 87.8,
75.7, 63.3, 54.5, 39.7, 30.2, 27.3, 25.9, 25.4, 24.6, 20.8, 19.3,
18.9, 17.3. IR (neat) cm−1: ν 3060, 2960, 2240, 1140.

7-Methyloct-6-en-2-yn-1-ol (3a). The alkyne THP ether 2-((7-
methyloct-6-en-2-yn-1-yl)oxy)tetrahydro-2H-pyran (2a) (1.667 g,
7.50 mmol) was dissolved in methanol (100 ml). Hydrochloric
acid (concentrated, 5 drops, catalytic amount) was added. The
reaction was stirred at room temperature for 1 h. The reaction
was poured into a separatory funnel containing sat. aq.
NaHCO3 (15 ml) and extracted with dichloromethane (3 ×
50 ml). The combined organic phase was dried (MgSO4), con-
centrated in vacuo, and chromatographed on silica gel
(1 : 1 hexanes–diethyl ether) to give 0.828 g of the alcohol 4a
(80%) as a colorless oil. (bp: 93–5 °C) as a colorless oil. Rf 0.43
(1 : l hexanes–ether); data: 1H NMR (400 MHz, CDCl3) δ:
5.18–5.13 (m, 1H), 4.25 (s, 2H), 2.26–2.17 (m, 4H), 1.70 (s, 3H),
1.62 (s, 3H), 1.52 (s, 1H); 13C NMR (400 MHz, CDCl3) δ: 133.1,
122.6, 86.4, 78.3, 51.4, 27.3, 25.6, 19.2, 17.7; HRMS calcd for
C9H140 138.1045, found 138.1041. IR (neat) cm−1: ν 3550–3160,
2970, 2920, 2860, 2280, 2220, 1470, 1370, 1130, 1100,
1010 cm−1.

(2E)-7,11-Dimethyldodeca-6,10-dien-2-yn-1-ol (3b). The
alkyne THP ether (2E)-2-((7,11-dimethyldodeca-6,10-dien-2-yn-
1-yl)oxy)tetrahydro-2H-pyran (2b) (2.175 g, 7.50 mmol) was dis-
solved in methanol (100 ml). Hydrochloric acid (concentrated,
5 drops, catalytic amount) was added. The reaction was stirred
at room temperature for 1 h. The reaction was poured into a
separatory funnel containing sat. aq. NaHCO3 (15 ml) and
extracted with dichloromethane (3 × 50 ml). The combined
organic phase was dried (MgSO4), concentrated in vacuo, and
chromatographed on silica gel (1 : 1 hexanes–diethyl ether) to
give 1.282 g of the alcohol 4a (83%) as a colorless oil. (bp
120–124 °C (0.5 mm)) as a colorless oil. Rf 0.40 (1 : l hexanes–
ether); data: (lit.37) 1H NMR (400 MHz, CDCl3) δ: 5.16 (m, 1H),
5.09 (m, 1H), 4.25 (d, 2H, J = 10.8), 2.22 (narrow m, 4H), 2.07
(m, 2H), 1.99 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H),
1.50 (t, 1H, J = 10.8), 13C NMR (400 MHz, CDCl3) δ: 133.1,
122.6, 86.4, 78.3, 51.4, 27.3, 25.6, 19.2, 17.7; HRMS calcd for
C14H1220: 206.1671, found 206.1667 IR (neat) cm−1 3334, 2287,
2224, 1670, 1020 cm−1.

(2E)-3-Bromo-7-methylocta-2,6-dien-1-ol (4a). 7-Methyloct-6-
en-2-yn-1-ol (3a) (0.317 g, 2.3 mmol) in 10 mL of dry THF was
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added to a dry flask under N2. Red-Al (1.17 mL, 3.9 mmol) was
added dropwise via syringe and the reaction mixture was
allowed to stir at rt for 36 h. The reaction mixture was cooled
to −78 °C and N-bromosuccinimide (NBS) (0.783 g, 4.4 mmol)
dissolved in THF was added dropwise and the reaction
mixture was allowed to stir at −78 °C for an additional 1 h. The
crude mixture was stirred at 0 °C for 2 h and was quenched by
the addition of saturated sodium potassium tartrate
(Rochelle’s salt). The aqueous layer was extracted several times
with ether. The organic layers were combined, washed with
brine, dried over MgSO4 and concentrated. This colorless oil
consisted of desired (4a) as an isomeric mixture (GC). The
residue was purified by chromatography on silica using 1 : 1
(v/v) hexane–ether to yield 200 mg (42%) of a colorless oil (GC:
96% pure). Rf = 0.43 (1 : l hexanes–ether); data: 1H NMR
(400 MHz, CDCl3) δ: 5.93 (tt, 1H), 5.08 (t, 1H), 4.26 (d, 2H),
2.50 (t, 2H), 2.25 (dt, 2H), 1.78 (s, 1H), 1.70 (s, 3H), 1.64
(s, 3H); 13C NMR (400 MHz, CDCl3): δ: 133.44, 130.2, 128.0,
122.5, 62.8, 42.0, 27.1, 26.0, 18.1. HRMS calcd for C14H22BrO
(M − H2O) 200.0195, found 200.0196. IR (neat) cm−1:
v 3540–3100, 2970, 2930, 2850, 1705, 1635, 1445, 1375, 1080,
1020, 825.

(2E,6E)-3-Bromo-7,11-dimethyldodeca-2,6,10-trien-1-ol (4b).
(2E)-7,11-Dimethyldodeca-6,10-dien-2-yn-1-ol (3b) (0.473 g,
2.3 mmol) in 10 mL of dry THF was added to a dry flask under
N2. Red-Al (1.17 mL, 3.9 mmol) was added dropwise via
syringe and the reaction mixture was allowed to stir at rt for
48 h. The reaction mixture was cooled to −78 °C and N-bromo-
succinimide (NBS) (0.783 g, 4.4 mmol) dissolved in THF was
added dropwise and the reaction mixture was allowed to stir at
−78 °C for an additional 1 h. The crude mixture was stirred at
0 °C for 2 h and was quenched by the addition of saturated
sodium potassium tartrate (Rochelle’s salt). The aqueous layer
was extracted several times with ether. The organic layers were
combined, washed with brine, dried over MgSO4 and concen-
trated. This colorless oil consisted of desired (4b) as an
isomeric mixture (GC). The residue was purified by chromato-
graphy on silica using 1 : 1 (v/v) hexane–ether to yield 257 mg
(39%) of a colorless oil (GC: 96% pure). Rf = 0.40 (1 : l hexanes–
ether); Data: 1H NMR (400 MHz, CDCl3) δ: 5.83 (t, J = 5.8 Hz,
1H) 5.08 (t, J = 5.7 Hz, 2H), 4.18 (d, J = 5.8 Hz, 2H), 2.52 (m,
2H), 2.21 (m, 2H), 2.06–1.95 (m, 4H), 1.73 (s, 1H), 1.68 (s, 3H),
1.62 (s, 3H), 1.59 (s, 3H) 13C NMR (400 MHz, CDCl3) δ: 136.9,
133.8, 131.6, 124.4, 122.1, 110.3, 67.5, 45.6, 39.8, 28.1, 26.9,
25.9, 17.9, 16.4: HRMS calcd for C14H22BrO (M − H2O)
268.0821, found 268.0820. IR (neat) cm−1: v 3540–3100, 2970,
2930, 2850, 1705, 1635, 1445, 1375, 1080, 1020, 825.

General procedure for the preparation of trisammonium
diphosphates

Trisammonium diphosphates were prepared according to the
modified method of Woodside et al.38 To a solution of N-chloro-
succinimide (11.39 mmol) in CH2Cl2 (45 mL) at −30 °C under
argon was added dropwise freshly distilled dimethyl sulfide
(1.1 eq. mol). The mixture was warmed to 0 °C, stirred at this
temperature for 10 min and cooled to −40 °C. A solution of

alcohol 4a or 4b (1 eq. mol) in CH2Cl2 (5 mL) was slowly added
before the reaction mixture was warmed to 0 °C. Stirring was
continued for 2 h at 0 °C and 15 min at rt. The clear solution
was then washed with cold saturated NaCl (25 mL). The
aqueous phase was extracted with pentane (2 × 20 mL). The
combined organic layers were washed with cold saturated NaCl
(20 mL), dried (MgSO4), concentrated under reduced pressure
(no water bath) and completely removed under high vacuum
for 2 h. Corresponding alkyl chlorides were used without
further purification. Freshly prepared tris(tetrabutyl-
ammonium) hydrogen pyrophosphate (1.2 eq. mol) was dis-
solved in ACN (5 mL) at rt under argon before dropwise
addition of alkyl chloride in ACN (2 mL). Stirring was contin-
ued at rt overnight. The mixture was concentrated under
reduced pressure. The residue was dissolved in (NH4)2CO3

(3 mL) (0.25 mM, 2% isopropyl alcohol), loaded onto a 2 ×
30 cm column of Dowex 50WX8-200 (NH4

+ form) before
elution of two volumes column of (NH4)2CO3 (0.25 mM, 2%
isopropyl alcohol). The eluent was lyophilized and the result-
ing white powder was purified by chromatography on cellulose
(1 : 9 (v/v) water in ACN). Fractions were monitored by TLC
(silica gel, iPr-OH–water–AcOEt 6 : 3 : 1) and those containing
trisammonium diphosphate were combined. Solvents were
removed under reduced pressure and the resulting solution
was lyophilized to afford 5a or 5b.

Trisammonium (2E)-1-(3-bromo-7-methylocta-2,6-dienyl)-
diphosphate (5a). According the general procedure, phos-
phorylation of 4a (0.127 g) gave 5a (0.153 g, 35% from 5a) as a
flocculent white solid. mp: 157–160 °C. Data: 1H NMR
(400 MHz, D2O/ND4OD) δ: 5.94 (t, 1H, J = 5.8 Hz), 5.07–5.07
(m, 1H), 4.39 (t, 2H, J = 6.4 Hz), 2.38–2.41 (m, 2H), 2.14–2.18
(m, 2H), 1.54 (s, 3H), 1.48 (s, 3H); 13C NMR (400 MHz, D2O/
ND4OD) δ: 135.0, 130.6, 126.2, 122.8 (d, J = 7.3 Hz), 65.7 (d, J =
3.1 Hz), 41.4, 26.4, 25.2, 17.7; 31P NMR (400 MHz, D2O/
ND4OD) δ: −5.81, −10.54; HRMS (ESIMS) calcd for
C9H17Br07NaP2 [M + Na]+ 400.9525, found 400.9525. IR (neat)
cm−1: v 3150–2920 (br), 2320, 2197, 1649, 1447, 1207, 1092,
920.

Trisammonium ((2E,6E)-3-bromo-7,11-dimethyldodeca-
2,6,10-trienyl)diphosphate (5b). According the general pro-
cedure, phosphorylation of 4b (0.141 g) gave 5b (0.131 g, 40%
from 4b) as a flocculent white solid. mp: 155–160 °C. 1H NMR
(400 MHz, D2O/ND4OD) δ: 5.17–5.22 (m, 2H), 4.59 (t, 2H, J =
6.5 Hz), 2.40–2.44 (m, 2H), 2.27–2.31 (m, 2H), 2.09–2.14 (m,
2H), 2.02–2.04 (m, 2H), 1.69 (s, 3H), 1.63 (s, 3H), 1.62 (s, 3H);
13C NMR (400 MHz, D2O/ND4OD) δ: 138.3, 138.2, 134.2, 125.1,
123.5, 123.0 (d, J = 7.7 Hz), 63.4 (d, J = 4.5 Hz), 39.4, 39.3, 26.5,
26.0, 25.5, 16.0,; 31P NMR (400 MHz, D2O/ND4OD) δ: −5.43,
−10.51 HRMS (ESIMS) calcd for C14H25Br07P2 [M + Na]+

469.0151, found 469.0151. IR (neat) cm−1: v 3150–2920 (br),
2320, 2197, 1649, 1447, 1207, 1092, 920.

Trisammonium (E)-geranyl and (2E,6E)-farnesyl diphos-
phates. Unlabeled GDP and FDP were synthesized from com-
mercial geranyl and farnesyl chloride (Aldrich) respectively,
according the phosphorylation procedure described
above.

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2015 Org. Biomol. Chem., 2015, 13, 4776–4784 | 4783

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
8 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

on
 0

9/
07

/2
01

5 
03

:3
2:

43
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online



Acknowledgements

We would like acknowledge Max Planck Society for funding.
We would also like to acknowledge Stefan Garms and Stephan
von Reuss for helpful discussions. We also like to thank Peter
Rahfeld and Rita Buchler for their help with protein
purification.

Notes and references

1 H. V. Thulasiram, H. K. Erickson and C. D. Poulter, Science,
2007, 316, 73–76.

2 J. H. Langenheim, J. Chem. Ecol., 1994, 20, 1223–1280.
3 E. Pichersky and J. Gershenzon, Curr. Opin. Plant Biol.,

2002, 5, 237–243.
4 E. Nambara and A. Marion-Poll, Annu. Rev. Plant Biol.,

2005, 56, 165–185.
5 M. Hilker, C. Kobs, M. Varama and K. Schrank, J. Exp. Biol.,

2002, 205, 455–461.
6 J. D. Connolly and R. A. Hill, Dictionary of Terpenoids,

Chapman & Hall, New York, 1992.
7 C. A. Lesburg, J. M. Caruthers, C. M. Paschall and

D. W. Christianson, Curr. Opin. Struct. Biol., 1998, 8, 695.
8 E. M. Davis and R. Croteau, in Biosynthesis: Aromatic Poly-

ketides, Isoprenoids, Alkaloids, Springer-Verlag, Berlin, 2000,
vol. 209, pp. 53–95.

9 J. P. Jones, K. R. Korzekwa, A. E. Rettie and W. F. Trager,
J. Am. Chem. Soc., 1986, 108, 7074.

10 C. L. Steele, J. Crock, J. Bohlmann and R. Croteau, J. Biol.
Chem., 1998, 273, 2078.

11 S. Garms, T. G. Köllner and W. Boland, J. Org. Chem., 2010,
75, 5590–5600.

12 G. I. Arimura, S. Garms, M. Maffei, S. Bossi, B. Schulze,
M. Leitner, A. Mithöfer and W. Boland, Planta, 2008, 227,
453–464.

13 D. W. Christianson, Chem. Rev., 2006, 106, 3412–3442.
14 N. A. Heaps and C. D. Poulter, J. Org. Chem., 2011, 76,

1838–1843.
15 F. Y. David, J. Miller, D. W. Knight and R. K. Allemann, Org.

Biomol. Chem., 2009, 7, 962–975.
16 D. J. Hosfield, Y. Zhang, D. R. Dougan, A. Broun,

L. W. Tari, R. V. Swanson and J. Finn, J. Biol. Chem., 2004,
279, 8526–8529.

17 F.-Y. Lin, C.-I. Liu, Y.-L. Liu, Y. Zhang, K. Wang, W.-Y. Jeng,
T.-P. Ko, R. Cao, A. H.-J. Wang and E. Oldfield, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 21337–21342.

18 J. A. Faraldos and R. K. Allemann, Org. Lett., 2011, 13,
1202–1205.

19 D. J. Miller, F. Yu, D. W. Knight and R. K. Allemann, Org.
Biomol. Chem., 2009, 7, 962–975.

20 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
21 M. Chen, N. Al-lami, M. Janvier, E. L. D’Antonio,

J. A. Faraldos, D. E. Cane, R. K. Allemann and
D. W. Christianson, Biochemistry, 2013, 52, 5441–
5453.

22 C. RA, Evaluation of enzyme inhibitors in drug discovery: a
guide for medicinal chemists and pharmacologists, John Wiley
& Sons, Hoboken, NJ, 2005.

23 C. D. Poulter, J. C. Argyle and E. A. Mash, J. Biol. Chem.,
1978, 253, 7227–7233.

24 C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner
and A. Schroer, J. Comput. Chem., 2010, 31, 2967–
2970.

25 K. Kim and K. D. Jordan, J. Phys. Chem., 1994, 98, 10089–
10094.

26 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and
M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.

27 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,
7, 3297–3305.

28 S. Frick, R. Nagel, A. Schmidt, R. R. Bodemann, P. Rahfeld,
G. Pauls, W. Brandt, J. Gershenzon, W. Boland and
A. Burse, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 4194–
4199.

29 C. M. Starks, K. W. Back, J. Chappell and J. P. Noel, Science,
1997, 277, 1815.

30 E. Krieger, G. Koraimann and G. Vriend, Proteins: Struct.,
Funct., Bioinf., 2002, 47, 393–402.

31 S. Sirimulla, J. B. Bailey, R. Vegesna and M. Narayan,
J. Chem. Inf. Model., 2013, 53, 2781–2791.

32 Z. Dauter, M. Dauter and K. R. Rajashankar, Acta Crystal-
logr., Sect. D: Biol. Crystallogr., 2000, 56, 232–237.

33 J. M. Bijvoet, A. F. Peerdeman and A. J. van Bommel,
Nature, 1951, 168, 271–272.

34 M. E. Jung and M. H. Parker, J. Org. Chem., 1997, 62, 7094–
7095.

35 A. C. Oehlschlager, S. M. Singh and S. Sharma, J. Org.
Chem., 1991, 56, 3856–3861.

36 S. Ghosal, M. Nirmal, J. C. Medina and K. S. Kyler, Synth.
Commun., 1987, 17, 1683–1694.

37 J. Hooz, J. Cabezas, S. Musmanni and J. Calzada, Org.
Synth., 1990, 69, 120–128.

38 A. B. Woodside, H. Zheng and C. D. Poulter, Org. Synth.,
1988, 66, 211–219.

Paper Organic & Biomolecular Chemistry

4784 | Org. Biomol. Chem., 2015, 13, 4776–4784 This journal is © The Royal Society of Chemistry 2015

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
8 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

on
 0

9/
07

/2
01

5 
03

:3
2:

43
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.

View Article Online



 



 

 

6.4 Manuscript IV: Novel biosynthetic products from multiproduct 

terpene synthase from Medicago truncatula using non-natural 

isomers of prenyl diphosphates 
 

Abith Vattekkatte, 1 Dr. Stefan Garms 2 and Prof. Dr. Wilhelm Boland 3 
 

 
(Under preparation) 

 
Graphical Abstract 

 
 

 
 

 
Summary 

 
The multiproduct sesquiterpene synthase MtTPS5 isolated from Medicago truncatula 

generates 27 products from (2E,6E)-farnesyl diphosphate (FDP). In this work, we report 

the reaction steps involved in the formation of novel products from (2Z,6E)-FDP. The 

absolute configuration of individual products was used to establish the stereochemical 

course of the reaction cascade after incubation with geometric isomers as substrates. 

Interestingly the unnatural precursor (2Z,6E)-FDP generated only one enantiomer of each 

product indicating the high stereospecificity of the reaction. These substrates showed a 

novel cyclization pathway leading to sesquiterpenes containing humulane, amorphene and 

himachalane skeletons, which were not observed with the (2E,6E)-(FDP).  
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Abstract 

Terpene synthases are highly promiscuous enzymes that responsible for a large diversity of terpenes 

found in nature. The multiproduct sesquiterpene synthase MtTPS5 isolated from Medicago truncatula 

generates 27 products from (2E,6E)-farnesyl diphosphate (FDP). In this paper, we report the reaction steps 

involved in the formation of the products from (2Z,6E)-FDP analogous to presumptive reaction 

intermediates. Using incubation experiments with geometric isomers as substrates; the absolute configuration 

of individual products was used to establish the stereochemical course of the reaction cascade. Interestingly 

the unnatural precursor (2Z,6E)-FDP generated only one enantiomer of each product indicating the 

stereospecificity of reaction. These substrates showed a novel cyclization pathway leading to sesquiterpenes 

containing humulane, amorphene and himachalane skeletons, which were not observed with the (2E)- isomer 

substrate. These geometric analogs can be used to generate novel cyclic products with highly promiscuous 

terpene synthases in combination with site directed mutagenesis of enzymes.   

Introduction  

Terpenes constitute the largest and most diverse class of plant natural products with more than 

55,000 members found in almost all forms of life.1 They serve many biological functions such as hormones 

(steroids, gibberellins, abscisic acid)2, structural components of membranes (phytosterols), attractants for 

pollinators3, toxins4, feeding or oviposition deterrents to a large variety of insects.5 In addition to these direct 

defense strategies there are also indirect defenses which play a major role, for example emission of volatile 

organic compounds that may attract herbivore’s enemies, such as predators or parasitoids.6 They are not only 

significant in chemical ecology but also are of high commercial significance as varied as medicines, 

materials, fuels, and chemicals especially as flavors and fragrance.6 Volatile terpenoids, which constitute a 

major class of induced volatiles, are synthesized by specific enzymes known as terpene synthases. These 

enzymes have been intensively investigated in the last decades and various cDNAs encoding plant terpenoid 

synthases involved in primary and secondary metabolisms have been cloned and characterized.7  

Enzymes with promiscuous functions have long been believed to evolve and acquire higher 

specificity and activity and this plasticity has been achieved with a small number of amino acid 

substitutions.8 This promiscuity gives us the opportunity to study the enzyme evolution as well as design 

them as better future catalysts. Catalytic promiscuity has been for long known as one of the key features of 

terpene synthases, especially sesquiterpene synthases.6b, 6c All sesquiterpenes known to date are derived from 

300 basic hydrocarbon skeletons formed by sesquiterpene synthases from the universal precursor farnesyl 



diphosphate (FDP).9 The structural diversity is created by generating an environment that binds the flexible 

isoprenoid substrate in a proper orientation and conformation to enforce specific trajectories for C-C bond 

formation. Besides terpene synthases generating single product, multiproduct terpene synthases are also 

known for producing a collection of acyclic and cyclic products from a single precursor.7a The -selinene 

synthase and the -humulene synthase from Abies grandis hold the present record by producing 52 and 34 

different sesquiterpenes.10 The biosynthetic promiscuity is assumed to result from an active site allowing 

alternative conformations of the substrate and later intermediates.  

During terpenoid biosynthesis the unsaturated diphosphates (FDP etc.) are dissociated into highly 

reactive cations and phosphate anions. These electrophilic cations interact with electron-rich double bounds 

in the vicinity, followed by intramolecular cyclizations, rearrangements, including hydride or methyl shifts 

prior to stabilization by either deprotonation or a reaction with a nucleophile.11 Due to the (E)-configuration 

of substrate, this intramolecular cyclization proceeds through the remote double bonds, for example in FDP 

medium-sized ring systems such as caryophyllene and humulene are generated. In contrast, the direct 

intramolecular cyclization of (2E,6E)-FDP with the neighbouring C(5)-C(6) double bond to cyclohexenyl 

cations is not possible and requires a preceding isomerization. This is achieved by a suprafacial migration of 

the diphosphate moiety of the substrate that leads to an enzyme-bound tertiary allylic intermediate.12 In our 

previous work, we have shown that this rotation around the newly formed C(2)-C(3) bond and ionization of 

the corresponding cisoid conformer affords the neryl cation and the trans-farnesyl cation, having the right 

geometry for C(6)-C(1)-closure but also has rate limiting effects on whole cascade.13  

In order to understand the catalytic promiscuity of multiproduct terpene synthases, we have 

performed mechanistic studies on multiproduct sesquiterpene synthase MtTPS5 from Medicago truncatula.14 

The promiscuous behavior of this enzyme was investigated by using (2Z,6E)-FDP as a mimic for the 

secondary cisoid neryl cation intermediate generated during biosynthesis from (2E,6E)-FDP in which the 

C2=C3  bond is already in the cis configuration. This geometrical isomer has been used to study the kinetics 

of various terpene synthases, but very few studies have compared the cyclization properties of these highly 

promiscuous enzymes with geometric isomers.15 We were interested whether the cyclization cascade with 

(2Z,6E)-FDP would yield the same product profiles with MtTPS5 as observed with their normal substrate 

(2E,6E)-FDP. This would be similar to what we observed with maize sesquiterpene synthases TPS4 and 

TPS5, which resulted in the same volatile profile but with higher turnover.13 In a similar work with Cop4 and 

Cop6 from Coprinus cinereus, different products resulting from the opposite enantiomer (6S)- -bisabolene as 

opposed to (6R)- -bisabolene and (2E,6E)-germacradienyl carbocation respectively from (2E,6E)-FDP were 



observed.16 Interestingly, in case of MtTPS5, the product formation saw a completely different product 

profile, with novel cyclic products not seen with (2E,6E)-FDP. 

Results and discussion 

To evaluate the impact of the stereochemistry of C(2)-C(3) double bond of the FDP-precursors, the 

(2Z)-isomers were synthesized. The highly efficient synthesis of (2Z,6E)-farnesyl diphosphate as its tris-

ammonium salt  from (2Z,6E)-farnesol has been previously described.17 Recombinant MtTPS5 from 

Medicago truncatula was expressed and purified as described.14 

Enzymatic characterization of substrates 

We had also previously proposed the complex mechanistic pathway controlled by the MtTPS5 using 

a combination of techniques including labelling experiments.14b In brief, the reaction cascade is initiated by 

the formation of a highly reactive farnesyl carbocation by the disassociation of diphosphate moiety. The C1 

to C11 ring closure affords the humulyl cation, which generates terpenoids such as -humulene and -

caryophyllene. Most of the products require the initial C1 to C10 closure generating the germacren-11-yl 

cation which is further cyclized to products like germacrene D and germacrenyl based alcohols. The other 

key cationic intermediates are (2Z,6E)-germacren-1-yl cation and cadinan-7-yl cation, leading to about 80% 

of products. These intermediates are generated by isomerization of FDP to nerolidyl diphosphate (NDP). 

Even alteration of a single amino acid has a dramatic effect on the product profile; alteration of tyrosine to 

phenylalanine in MtTPS5 prevents the formation of a key intermediate via protonation of germacrene D as a 

neutral intermediate. The tight control of the enzyme leads to 27optically pure products resulting from 

cyclization steps and hydride shifts. Hen ce, it was of great interest to observe the response of the enzyme on 

incubation with (2Z,6E)-FDP, to study the rate limiting effects of the initial isomerization step and their 

consequences for the reaction cascade. These product alterations depend on the nature of the initial 

carbocationic intermediates formed whose stability and ease of deprotonation may favor different reaction 

channels. 

 

Incubation with (2Z,6E)-FDP 

Unlike the maize sesquiterpene synthases, the incubation of (2Z,6E)-FDP gave a completely different product 

profile as compared to (2E,6E)-FDP. They were different in both qualitative as well as quantitative terms. 

The GC-FID chromatogram product profile of MtTPS5, when incubated with (2Z,6E)-FDP showed the 



presence of 23 different sesquiterpenes (Figure 1). Out of these 23 compounds, 14 sesquiterpenes were 

identified based on their retention indices and mass spectra in comparison with authentic references (Figure 

2).  

 

Figure 1: GC-FID Chromatogram of major sesquiterpenes on incubation of recombinant MtTPS5 with 
(2E,6E)-FDP and (2Z,6E)-FDP. The compounds were identified by their Kovats indices and mass spectra as 
compared to authentic references. Only major sesquiterpenes are labelled. (2E,6E)-FDP: 1 -Copaen, 2 -
Cubebene, 3 (E)- -Caryophyllene, 4 Cadina-3,5-diene, 5 allo-Aromadendrene, 6 -Muurolene, 
7 Germacrene D, 8 -Muurolene, 9 Cubebol, 10 -Cadinene, 11 Copan-3-ol, 12 4 -Hydroxygermacra-
1(10),5-diene, 13 Copaborneol, 14 Torreyol. (2Z,6E)-FDP: 15 -Ylangen, 16 -Himachalene, 17 Isobicyclo-
germacrene, 18 -Amorphene, 19 -Humulene, 20 -Himachalene, 21 -Himachalene, 22 -Amorphene 
25 Humulan-4,9-dien-8-ol and 27 2-Himachalen-7-ol. Sesquiterpene alcohols 23, 24 and 26 (C15H26O II-IV) 
could not identified. 

The most interesting aspect of these results with (2Z,6E)-FDP was that the dominant terpenoid skeletons were 

completely absent in case of (2E,6E)-FDP. The product profile of (2Z,6E)-FDP consisted  predominantly of  

mono- and bicyclic sesquiterpenes containing humulane , amorphene and himachalane skeletons, which were 

not observed on the reaction with the (2E)- isomer substrate. This suggested that product formation with 

(2Z,6E)-FDP by MtTPS5 followed a completely novel pathway as compared with natural substrate.  

 

 

 

 



Stereochemical analysis of products 

 

Figure 2: Determination of the absolute configurations of some products obtained after incubation of MtTPS5 
with (2Z, 6E) -FDP. The separation of the enantiomers was carried out by GC-MS on a chiral phase (shown for 15 (A), 
20 (B) and 23 (C)). D.Juxtaposi tion of isomeric compounds starting from (2Z,6E)-FDP (top row) and (2E,6E)-FDP 
(bottom row). Bicyclogermacrene (28). 

The absolute configuration of - und -Amorphene, - und - himachalene, as well as of -Ylangen was 

determined by GC- MS on a chiral phase column (Fig. 2, supporting information). The stereochemical 

analysis of the enzyme products reveals the conservation of configurations among compounds with the same 

hydrocarbon skeleton as well as between related structures with (2Z,6E)-FDP. One common factor observed 

with both geometric isomers is that the enantiomeric composition of all substances was high degree optical 

purity. The absolute configuration and identity of individual compounds was confirming by comparing it 

with authentic standards obtained from various sources (supporting information). Accordingly, it can be 

inferred that MtTPS5 exerts a stronger control on the initial conformation of the farnesyl cation allowing only 

the formation of the one enantiomer of the products. In contrast, the multiproduct terpene synthase TPS4 

from Zea mays and the trichodiene synthase from Fusarium sporotrichioides generate a mixture of racemic 

and diastereomeric products.18 For -Amorphene (18) the determination of the enantiomeric excess was not 

possible because the (+)-enantiomer co-eluted with that of (+)- -Amorphene (+)-23 (Supporting 

information). All compounds generated from MtTPS5 with (2E,6E)-FDP as substrate shared (S)-configured 



stereochemistry at C10. In contrast, the bridgehead hydrogen atoms (C1-H, C6-H) of -Ylangen, as well as 

- und -Amorphene of (2Z,6E)-FDP had an opposite orientation to those from (2E,6E)-FDP generated 

volatiles (1, 8 and 10) (Fig. 2). 

Structure elucidation of Major product Humulan 6,9-dien-3-ol  

 

Figure 3: Structure elucidation of Humulan 6,9-dien-3-ol (25). GC-MS chromatograms which were obtained by 
reactions of a column chromatography on silica gel purified fraction of 25 and its secondary products. (A): an 25-
enriched fraction, (B) products by catalytic hydrogenation of 25, (C) products after acid catalyzed dehydration of 29, (D) 
products by catalytic hydrogenation of 30a-e, (E) reference, obtained from 19 by hydrogenation 32a, b. 

The available mass spectra libraries and Kovats indices were unsuccessful to match up 25 as their main 

product. The structure was thus elucidated by classical step by step derivatization (Fig. 3). The mass 

spectrum of 25 a weak molecular peak at m/z=222 and fragment ions at m/z=207 [M-Me]+ and m/z=204 ( [M-

H2O]+) , indicating the structure of a sesquiterpene. Catalytic hydrogenation of a highly enriched fraction 25 

yielded a product (29) with a the increased mass of 4 amu of the fragment ion [M-H2O]+ m/z = 208. It could 

be deduced from this reaction that 25 is a monocyclic system in which two double bonds were reduced. After 

acid-catalyzed dehydration of 29 with trifluoroacetic anhydride five compounds (102a -e) were on separation 

by gas chromatography, which had the expected molecular peak at m/z = 208. This helped us further 



conclude that the hydroxy group could be located only on a tertiary carbon atom, because the detection of 

five stereoisomeric products, as a secondary alcohol would have provided only four products. Further proof 

of the fact that 25 is a 11- membered ring system, was observed when by hydrogenation of the mixture of 

substances (30 a- e) yielded the same diastereomeric Humulane (32 a,b) on the hydrogenation of -humulene 

(19). On connecting all observed results, the product can confirmed as Humula-4,9-dien-8-ol (25), which was 

isolated by Pentegova et al., from the resin of silver fir (Abies alba). 19 

Proposed mechanism of MtTPS5-catalyzed cyclizations of (2Z,6E)-FDP  

Previous labelling and mechanistic studies of MtTPS5 with (2E,6E)-FDP showed that the enzyme is capable 

of generating cadalane sesquiterpenes via two different pathways. It was also observed that the reaction 

channel by which the isomerization of the initially formed (2E,6E)-farnesyl cations is converted to (2Z,6E)-

farnesyl cation is comparatively suppressed.14b Interestingly, when (2Z,6E)-FDP substrate analogue was used, 

a completely new range of products was obtained. A large proportion of the released compounds (~ 33%) had 

a cadalane backbone, which in contrast to the (2E,6E)-FDP products possessed opposite absolute 

configuration (1S , 6R ) of the bridgehead carbon atoms. Due to the determination of the absolute 

configurations of some of the products, the stereochemical course of the reaction cascade and the starting 

conformation of the (2Z)-isomeric substrate could be reconstructed (Fig. 4). The highly reactive (2Z,6E)-

farnesyl cation, which is formed after cleavage of the diphosphate group of (2Z,6E)-FDP is predominantly 

undergoes (~ 57%) by a C1 -C11 ring closure to generate (2Z,6E)-Humul-10-yl cation. The transfer of 

positive charge from C10 to C1 is only possible by a direct hydride 1, 3-shift. Due to the presence of a 

quaternary carbon atom between these two positions, the possibility of two consecutive 1, 2-hydride shifts is 

eliminated. Deprotonation of the (2Z,6E)-Humul-1-yl cation (36) generates -humulene (19), this on further 

reaction with water, results in the main product Humulan-6,9- dien-3- ol (25). Furthermore, the Himachalanes 

16, 21, 20 and 27 are released from 36 through an electrophilic attack on the si face of the C6-C7 double 

bond, followed by elimination of a proton or by reaction with a water molecule.  

Another reaction channel, which starts from (2Z,6E)-farnesyl cation  passes through the ten -membered 

macrocyclic (2Z,6E)-germacrene-11-yl cation (33) after initial C1-C10 cyclization. In this step, initially the 

(R) configuration at C10 is established, which is conserved in all the Cadalane sesquiterpenes. Analogous to 

the proposed reaction mechanism with (2E,6E)-FDP, a 1,3-deprotonation of C1-HRE leading to 

bicyclogermacrene, a similar mechanism is observed with (2Z,6E)-FDP, wherein the isomer 

Isobicyclogermacrene (17) is formed. In addition, the absolute configuration at C1 of Isobicyclogermacrene 



(17) suggests that the (2Z,6E)-germacrene-11-yl cation (33) is generated by a shift of 1- HRe from C1 to C11. 

This assumption must be confirmed by incubation experiments with chirally deuterated substrates ((1S)- as 

well as (1R)-[1-2H]-FDP). In the further course of the reaction C1-C6 ring-closure yields 35, and further to 

cadinane-7-yl cation (37c), this passes through loss of a proton in the two double-bond generating 

Amorphenes 23 and 18. The tricyclic rings are formed after an additional cyclization of 37c between C2 and 

C7 followed by deprotonation to (-)-  -Ylangen (15). 

 

Figure 4: Proposed mechanism of formation of the products after incubation of (2Z, 6E) -FDP with MtTPS5 

A close correlation exists between the two reaction cascades that leads to terpenoid formation, starting from 

both (2E,6E)- and (2Z,6E)-FDP (Fig. 4). The essential elements such as 1,3-hydride shift, initial 1,10- or 

1,11- cyclization and the formation of bicyclic compounds by a second ring closure are found in both reaction 

mechanisms. The huge structural difference in the products mainly due to the different starting conformation 

of the two substrates, as the reactive moieties each occupies a different spatial arrangement, which needs 

further examination with help of docking studies. The large influence of the initial folding of farnesyl cation 

in the active site depending on the configuration of the C2-C3 double bond has already shown in case of 5-



epi- aristolochene synthase (TEAS) of tobacco.20 This was possible due to availability of crystal structures of 

enzyme-substrate complexes of TEAS with fluorine analogs of (2E,6E)- and (2Z,6E)-FDP. The different 

stereo-and regiochemical course of the reaction cascade two starting conformation is similar to MtTPS5 

cannot confirmed due to lack of crystal structure of multiproduct terpene synthases.20-21 Work is in progress 

to co-crystalize the 3-bromo substrate to decipher the structural basis of this diversity as well as catalytic 

promiscuity.22 The isolation of a (2Z,6E)-FDP synthase from Mycobacterium tuberculosis, which is involved 

in the bacterial cell wall biosynthesis, indicates the relevance of (2Z,6E)-FDP in other biological systems.23 

This also indicates the possibility of a "sleeping" cyclization pathway starting from (2Z,6E)-FDP but none 

has been found so far. 

Conclusions 

In this work we probe the reaction mechanism of multiproduct terpene synthase from Medicago truncatula 

that can isomerize the C2=C3  bond of (2E,6E)-FDP via an NDP intermediate. This step precedes the 

catalysis of subsequent cyclization reactions generating 27 sesquiterpenoids. We were able to show that 

MtTPS5 is very promiscuous, generating multiple cyclization products from (2Z,6E)-FDP. The product 

profile of (2Z,6E)-FDP consisted  predominantly of  mono- and bicyclic sesquiterpenes containing humulane, 

amorphene and himachalane skeletons, which were not observed on the reaction with the (2E)- isomer 

substrate. The determination of absolute configuration of final products and the presence of only one 

enantiomer shows the exceptional stereochemical control of MtTPS5 over the reaction cascade. These 

alternative geometric analogs can be used to generate novel cyclic products with highly promiscuous terpene 

synthases with help of site directed mutagenesis.   
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7.1 Multiproduct terpene synthases 

One of the unique traits associated with terpene synthases is their ability to convert an acyclic prenyl 

diphosphate into multiple products which ultimately leads to the huge diversity of known terpene 

compounds.1,106 Despite their ability to expand the abundance and diversity of terpenes as secondary 

metabolites, there are still large gaps in our knowledge about the structure of multiproduct terpene synthase 

and the mechanism that results in the formation of multiple products. The property of multiple product 

formation is found in nearly half of all characterized mono and sesquiterpene synthases but no common 

feature has been identified in known sequences that is linked to this capability.106 Since this ability is so 

abundant it can be safely inferred that the carbocationic intermediates can be stabilized in multiple ways by 

the enzyme, but that is usually directed towards a single product. 

In terms of structural features some knowledge has been gained despite the lack of crystal structure 

by characterizing the individual terpene synthases for generating multiple products. In case of the record 

holder -selinene synthase from Abies grandis, the formation of 52 different sesquiterpenes has been 

postulated to be due to presence of two DDxxD motifs located on opposite sides of active site cleft.94,168 This 

facilitates the possibility of substrate binding in two pockets in different conformations which leads to this 

massive product diversity by a single enzyme.94 There is also the possibility that multiproduct formation by 

these enzymes is due to a NSE/DTE motif that is located at the same position as the second DDxxD motif in 

some terpene synthases.168,173 But a clear answer to this trait remains elusive due to the absence of clearly 

defined crystal structures of a multiproduct enzyme.128 

The conformational flexibility in the active site is supposed to be a major factor that allows 

formation of more reaction intermediates that subsequently result in more products. Nevertheless, based on 

various kinetic studies,151,174 we already know that the cationic cyclization cascades proceed rapidly; this 

limits the time scale for possible larger conformational changes in intermediates.175,176 Moreover, structural 

complexes of trichodiene synthase with substrate analogs demonstrated that the intermediates were bound in 

thermodynamically preferred conformations rather than ones expected as part of the mechanistic cascade. 

177,178 These results coupled with other studies point towards the fact that kinetic factors take precedence over 

thermodynamic process during product formation in terpene synthases.175 This perspective led to the 

inference that multiproduct formation is dependent on the early stage of substrate conformational changes. 

Hence, it would be very interesting to study the multiproduct behaviour of these enzymes by using substrates 

as metabolic probes with incorporated conformational changes.  



 

 

The best way to incorporate these conformational changes is by using the geometric double bond 

isomers of prenyl diphosphates as substrates for the multiproduct enzymes; which should provide new 

insights on multiple product formation. In fact till 2009, the (2E)-double bond isomer was universally 

accepted as the natural substrate for terpene synthases for both geranyl diphosphate (C10) and farnesyl 

diphosphate (C15). However in 2009, the work of Schilmiller et al., described the discovery of a monoterpene 

synthase in tomato glandular trichomes that accepted nerolidyl diphosphate (NDP) the (2Z)-isomer of GDP 

as its natural substrate.159 In case of sesquiterpene synthases, similar results were reported in case of wild 

tomato Solanum habrochaites where (2Z,6Z)-FDP was accepted as a precursor instead of traditionally 

accepted (2E,6E)-FDP.179 These alternative substrates proved to be an invaluable tool to study the 

biosynthesis of monoterpenes and sesquiterpenes in tomato plants.106 

The major aim of this thesis was to employ alternative substrates to probe the characteristics of 

catalytic pathway in multiproduct terpene synthases. Different strategies of labelling and conformational 

changes were employed by using the stereoisomers of natural substrates (Manuscript I, II).180,181 Moreover 

the interest in elucidating the structural characteristics that leads to this diversity prompted the development 

of an easy to synthesize substrate mimic that binds in an identical manner to natural one (Manuscript III).182 

Two sets of multiproduct terpene synthases were used for this purpose, one set comprising of two terpene 

synthase genes encoding stereoselective multiproduct enzymes TPS4 and TPS5 from B73 and Delprim maize 

varieties respectively.145 In the second set, MtTPS5 enzyme from model plant Medicago truncatula was used 

that produces 27 different sesquiterpene products from (2E,6E)-FDP.148,183,184 

7.1.1 Multiproduct enzymes from Zea mays 

The TPS4-B73 and TPS5-Delprim of Zea mays catalyze the formation of the same complex blend of 

terpene volatiles consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type 

sesquiterpenes albeit in distinctly different proportions.145,185-187 The terpenoid profiles from (2E)-GDP and 

(2E,6E)-FDP substrates were dominated by cyclic compounds with a terpinan/sabinan (monoterpenes) and 

bisabolane/sesquisabinane (sesquiterpenes) skeleton, respectively. Acyclic terpenoids were also present in the 

product mixture including the three acyclic monoterpenes, -myrcene, (R)-linalool and (S)-linalool produced 

from (2E)-GDP and the two acyclic sesquiterpenes, (E)- -farnesene and (3R)-(E)-nerolidol produced from 

(2E,6E)-FDP. These acyclic terpenes result from deprotonation or water-capture of the first cation formed 

after cleavage of the diphosphate group.  



 

 

From the amino acid sequences, the difference between TPS4 and TPS5 was found to be four amino 

acids of which the replacement of Gly residue at position 409 with an Ala affected the catalytic site. As a 

result it was found that different terpene profiles were controlled by allelic variation of the closely related 

terpene synthase genes TPS4 and TPS5.145 Although both enzymes showed the typical properties of 

sesquiterpene synthases (molecular mass, subunit architecture and the need for a divalent metal co-factor) 

they not only accepted FDP (C15) but also the C10 analog GDP as a substrate. Both substrates were almost 

exclusively converted into two types of cyclic products with cyclohexenyl- and bicyclo[3.1.0]hexyl moieties 

as common structural features (Figure 10). Interestingly, for the diastereoisomeric pairs of 7-epi-

sesquithujene and sesquithujene, sesquisabinene A and sesquisabinene B, (E)- -bergamotene and (Z)- -

bergamotene, and enantiomeric (S)- and (R)- -curcumene, and (S)- and (R)- -curcumene, respectively the 

first compound is abundant in the product profile of TPS4 and the latter in case of TPS5.145,188 

 

Figure 10: Volatile sesquiterpene products of two maize varieties and the corresponding terpene Synthase 
Enzymes (B) Comparison of products of terpene synthases TPS4 and TPS5 expressed in E. coli and incubated with FDP. 
A portion of the gas chromatography–mass spectrometry analysis of each sample is shown.(C) Structures of major 
sesquiterpene products. 1, 7-epi-sesquithujene; 2, sesquithujene; 3, (Z)- -bergamotene; 4, (E)- -bergamotene; 5, 
sesquisabinene B; 6, sesquisabinene A; 7, (E)- -farnesene; 8, (S)- -bisabolene. Adapted with permission Köllner, et al.145 

Interestingly, there is an extraordinary symmetry in the mechanistic cascade of both the enzymes 

starting with branching from the neryl cation. Both (R)- and (S)-bisabolyl cations further branch into an 

analogous mixture of products following parallel pathways, only exception being the (6S)-enantiomer of -

bisabolene. In terms of reaction rates, nearly 95% of the bisabolyl cation-derived products that originate from 

the (S)- configured bisabolyl cation in TPS5. While in case of TPS4, the split in the ratio of bisabolyl-derived 

products is almost equal between (R)- and (S)-bisabolyl cation, with a majority of the (S)-form represented by 



 

 

(S)- -bisabolene (Figure 11).145 Catalysis with GDP showed the same principal pattern as FDP but at a lower 

velocity, with identical 13 monoterpenes being formed as products in both cases.  
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Figure 11: Abbreviated TPS4 (green) and TPS5 (blue) reaction cascade showing product specificity of each 
enzyme from (2E,6E)-FDP. Maize TPS4 and TPS5 catalyze the formation of the same complement of sesquiterpene 
products, albeit in distinctly different proportions.  Abbreviated mechanisms depict the generation of 24% 7-epi-
sequithujene, and 6% sesquithujene for TPS4; and 2% 7-epi-sesquithujene, and 28% sesquithujene for TPS5. Blue and 
green arrows depict TPS5- and TPS4-preferred pathways, respectively.  

The relationship between active site scaffolds and the diversity in product formation was studied 

with the terpene synthase TPS4. The results of active site modelling and docking simulations suggested that 

discrete steps of the reaction cascade take place in two different active site pockets, with a shift from one 

pocket to the other being caused by conformational changes in the bisabolyl cation intermediate. With the 

help of mutagenesis studies, it was inferred that early steps of the catalytic process up to the formation of the 

monocyclic bisabolyl cation are localized in pocket I and the secondary cyclization takes place primarily in 

the pocket II region.188 

7.1.2 Multiproduct terpene synthase from Medicago truncatula 
To explore the regulatory mechanisms for herbivore-induced terpenoid emissions, three TPS cDNAs 

were cloned from M. truncatula.148,189 MtTPS5 is a multiproduct sesquiterpene synthase and incubation with 

FDP provides 18 sesquiterpene hydrocarbons and 10 sesquiterpene alcohols, with very different carbon 

skeletons comprising the germacrane, cubebane and allo-aromadendrene skeletons and other structures 

(Figure 12).149,190 Analysis of enantiomeric composition of the products revealed that all compounds were 

highly optically pure like optically pure (–)- -cubebene and (–)-germacrene D.149  



 

 

 

 

Figure 12: GC FID chromatograms of enzymatic products of recombinant MtTPS5 wild type (A) and Y526F 
mutant (B) from incubation with (2E,6E)-FDP. The products were identified by Kováts indices and mass spectra in comparison 
to authentic samples: 7, -cubebene, 8, -copaene; 9, -cubebene; 10, (E)- -caryophyllene; 11, -copaene; 12, cadina-3,5-
diene; 13, -humulene; 14, allo-aromadendrene; 15, trans-cadina-1(6),4-diene; 16, -muurolene; 5, germacrene D; 17, 
bicyclosesquiphellandrene; 18, bicyclogermacrene; 19, -muurolene; 20, -amorphene; 21, cubebol; 22, -cadinene; 23, cadina-1,4-
diene; 24, nerolidol 25, copan-3-ol; 26, 4 -hydroxygermacra-1(10),5-diene; 27, copaborneol 28, 1-epi-cubenol; 29, T-cadinol; 30, 
cubenol 31, torreyol; 32, kunzeaol 34, bicycloelemene. Adapted with permission from Garms et al.149 

The high enantiomeric excess of the products generated by MtTPS5 is remarkable; it indicated that the whole 

reaction cascade starting with the initial ionization of FDP, the isomerization of the farnesyl carbocation and 

subsequent cyclization to the final products is under tight control of the active site. The cyclization cascade was 

reconstructed (Figure 13) by following the products derived from a common carbocationic intermediate as they share 

the same configuration at all stereocenters. The farnesyl cation leads to the class of products linked to the 

bicyclogermacrane skeleton, humulene and caryophyllene,121,127,191 while the isomerization of the farnesyl to the 

nerolidyl cation results in the cubebenes and cadinenes.192-194 Based on a mechanism originally proposed by Arigoni in 

1975, it was concluded that the series of cadalanes is generated by protonation of a neutral germacrene D intermediate, 

shown by labelling experiments in D2O.166 Tyrosine at position 526 is known to provide a proton to germacrene A en 

route to 5-epi-aristolochene in TEAS.157 Exchange of this Tyr by a Phe in MtTPS5 (Y526F mutant) suppressed this 

reaction pathway confirming an analogous mechanism in the Medicago truncatula MtTPS5 enzyme. Interestingly, the 

Y526F mutant formed small amounts of the cadinene and cubebene family via the nerolidyl cation.149  



 

 

 

Figure 13: Proposed reaction mechanism for the formation of sesquiterpene products by MtTPS5 with (2E,6E)–
farnesyl diphosphate. Stereocenters with the same absolute configuration are marked in green, red, and blue. Reaction 
channels leading to 4a,b by protonation of germacrene D (light blue) or by the intermediacy of NDP (2) (orange) are 
highlighted. Adapted with permission from Garms et al.149 

7.2 Isotope Sensitive Branching in Multiproduct enzymes (Manuscript I) 
The reactions catalyzed by a typical terpene cyclase involve a complex series of isomerizations and 

intramolecular electrophilic reactions, frequently accompanied by molecular rearrangements and hydride 

shifts. They are usually terminated either by loss of a proton or by capture of an external nucleophile such as 

water or the pyrophosphate anion. All the carbocationic intermediates between the acyclic prenyl diphosphate 

and the final cyclization product are tightly sequestered by the cyclase in hydrophobic active site. Hence, 

unfortunately these complicated yet seamless transformations cannot be directly visualized.  

Multiproduct terpene synthases provides an attractive opportunity to decipher the normally vague 

chain of events leading to the generation of individual terpenes. Since all of the terpenoid products are 

derived either from geranyl diphosphate (GDP) or farnesyl diphosphate (FDP). It can be safely assumed that 

all of the products represent the quenching of individual intermediates at various stages of the multistep 

isomerization-cyclization-rearrangement process. Hence, this logic can be used by means of labelled 



 

 

substrates to clarify the sequence of biosynthetic reactions and to analyze the factors influencing the 

partitioning of the various carbocationic intermediates. The induced kinetic isotope effects are observed 

changes in product ratios in multiproduct enzymes resulting from an isotopically labeled substrate. In 

complicated enzymatic reaction cascades, this technique which uses intramolecular isotope effects has been 

used to examine the mechanistic hypotheses195-199. In such an experiment, the substrate is a molecule that is 

exactly equivalent except for isotopic substitution. Thus the observed isotope effects then reflect the 

intramolecular competition between the two otherwise equivalent sites.200 Harada et al.,201 have shown that 

within a branched reaction sequence, the “metabolic switching" or isotopically sensitive branching can affect 

the magnitude of the isotope effect.196  

Isotopically sensitive branching in a multiproduct enzyme describes the rate enhancement in the 

formation of one product at the expense of a second product due to isotopic substitution.202 Such an 

observation indicates that the two products arise from a common intermediate formed by the same enzyme. 

For the terpene cyclase reaction, a simplified kinetic model (Figure 14) is described as below: 

 

Figure 14: Kinetic model for isotopically sensitive branched reaction pathways. The model assumes 
that there is no isotope effect associated with binding (i.e., a single rate constant k2 describes the fractionation of 
[ES] to [ESH] and [ESH] and a single rate constant k-2 describes the formation of [ES] from [ESH] and [ESD]) and 
that product formation is irreversible. 200 

Stabilization of the carbocationic intermediates is partly ensured by interactions with the 

hydrophobic, aromatic-rich active-site of the enzyme (e.g. -cation interactions with aromatic residues of the 

active site).203 Nevertheless, hyperconjugative interactions within carbocations themselves also play an 

important role in their stability. In molecular orbital terms, hyperconjugation is described as the interaction of 

the vacant p-type orbital on the cationic center with adjacent C-H or C-C -bonds.20 The magnitude of this 

hyperconjugative effect depends on the number of hydrogen atoms attached to the carbon atom immediately 



 

 

adjacent to the unsaturated system. Because the energy required for breaking a C-D bond is higher than that 

for a C-H bond (i.e. a C-D bond is stronger than a C-H bond), a C-D hyperconjugation stabilizes an adjacent 

positive charge less than a C-H hyperconjugation. Consequently, reactions in which C-D bonds are broken 

proceed more slowly than reactions in which C-H bonds are broken. Such hyperconjugative weakening in 

reaction intermediates due to isotope (deuterium) substitution induces secondary kinetic isotope effects.  

Isotope sensitive branching experiments have been successfully used to confirm the complex 

reaction cascades of various monoterpene synthases like pinene synthases from Sage,204 pinene cyclase from 

Abies grandis,205 phellandrene cyclase from lodgepole pine (Pinus contorta)205 and other monoterpene 

cyclases.204,206,207 This technique has also been successfully used to probe mechanism of sesquiterpene 

synthases, tobacco epi-aristolochene synthase and hyoscyamus premnaspirodiene synthases.107 More 

recently, effects of isotopically sensitive branching on product distribution have been reported for 

pentalenene synthase and used to predict a new branching pathway.208,209 

7.2.1 Substrates for Isotope Sensitive Branching Experiments 

 

Figure 15: (A) Isotope sensitive branching strategy (B) monodeuterated and hexadeuterated of GDP and FDP. In 
case of hexadeuterated substrates, isotope labeled with deuterium atoms completely surrounding the C(3) carbon of the 
substrate and of the key intermediates were synthesized.  

To gain insight into terpenoid biosynthesis in maize and determine whether the final deprotonation 

of cationic intermediates en route to mono- and sesquiterpenes is rate limiting, deuterium kinetic isotope 

effects were investigated for TPS4 and TPS5 enzymes from B73 and Delprim maize varieties. The encoded 

terpene synthases were heterologously expressed in E. coli, purified and fully characterized. To study the 

kinetics of the reaction cascade and to understand the rate limiting role of the final deprotonations, stable 

isotope labeled substrates were synthesized with deuterium atoms completely surrounding the C(3) carbon of 

the substrate and of the key intermediates (Figure 15). Some of these cationic intermediates are flanked by 

protons; others are completely surrounded by deuterium atoms. Depending on their stability and ease of 

deprotonation reactions, different reaction channels may be favored. In order to study the impact of the 



 

 

degree of isotope labelling both monodeuterated and hexadeuterated analogs of GDP (C10) and FDP (C15) 

were evaluated as substrates. 180 

7.2.2 Kinetic isotope effects in multiproduct terpene synthases from Zea mays 

 

Figure 16: Proposed pathway for sesquiterpene formation from TPS4 and TPS5 using [2,4,4,13,13,13-2H6]-FDP. 
The black dots represent deuterated carbons. Some of these cationic intermediates are flanked by protons; others are 
completely surrounded by deuterium atoms. Depending on their stability and ease of deprotonation reactions, different 
reaction channels are favored. (Orange depicts an increase, blue decrease and no color resprsents no change as compared 
to unlabeled substrate). 

In the present study, the kinetic isotope effects (KIE) combine with the primary KIEs confirm the 

alteration of product distributions after isotopically sensitive branching. To illustrate the effects of 

hyperconjugation and the resulting secondary KIEs, the case of (2E,6E)-[2,4,4,13,13,13-2H6]-FDP and (2E)-

[2,4,4,9,9,9-2H6]-GDP were considered and product formation from FDP are depicted in Figure 16. 

Deuterium isotope effects are less pronounced in the case of the monodeuterated analogues since the positive 

charge is surrounded by only one deuterium atom, the other hydrogen atoms being able to undergo C-H 

hyperconjugative interactions.  

From (2E,6E)-[2,4,4,13,13,13-2H6]-FDP, the cyclization cascade is initiated by the formation of (S)- 

and (R)-bisaboyl cations (A and B, respectively) (Figure 16). These first carbocations can be directly 

deprotonated to produce (S)- -bisabolene without noticeable KIEs (the positive charge being located far from 



 

 

the deuterated center). Carbocations A4, A5, B4 and B5 are the less stable ones since the positive charge fully 

surrounded by deuterium atoms cannot be delocalized and stabilized by C-D hyperconjugation. The stability 

of the terminal carbocation results in the corresponding cyclic terpene being produced. Nevertheless, strong 

KIEs for the formation of sesquithujene, 7-epi-sesquithujene or sesquisabinenes A and B were obtained. 

Similarly, slight KIEs were observed for zingiberene isomers because carbocations A3 and B3 were not highly 

destabilized after deuterium substitution. The rate suppression was coupled with a corresponding 

enhancement in the rate of formation of - and -curcumene isomers, sesquithujene hydrate and 7-epi-

sesquithujene hydrate, leading to enhanced formation of alcohols. This pattern of isotope sensitive branching 

was also observed in case of monoterpene formation. 

Interestingly, the products arising from the deuterated precursors revealed an enhanced formation of 

alcohols instead of olefinic products in comparison with those from unlabeled (2E)-GDP and (2E,6E)-FDP. 

This observation of isotopically sensitive branching of product formation in maize supports the enzymatic 

biosynthesis of mono- and sesquiterpene volatiles from a common carbocationic intermediate along a 

branched reaction sequence. 

7.3 Effects of Substrate Geometry on Terpene Synthases (Manuscript II) 

The multiproduct formation in terpene synthases is dependent on the early stage substrate 

conformation changes.175 Novel insight into the multiproduct behaviour of these enzymes can be gained by 

using isotope-labelled geometric stereoisomers as metabolic probes.21 Enzymes that catalyze the trans-

pathway of catalysis rearrange and quench this initial transoid cation. Other enzymes that catalyze the cis–

trans pathway of catalysis recapture the diphosphate leaving group at carbon C3, thereby allowing rotation 

around the generated C2-C3 bond to yield the nerolidyl diphosphate (NDP) intermediate. Even in nature we 

know that with the discovery of tomato monoterpene synthase that accepted NDP instead of (E)-GDP as its 

natural substrate.159 Sesquiterpene synthases are known as very specific for either one or the other pathways, 

and yet there are examples of enzymes that use both pathways.210 

The advantage with using geometrical isomers of natural substrates like (2Z,6E)-FDP is that no 

isomerization step precedes the subsequent carbocation cyclization reactions as the desired cisoid farnesyl 

cation becomes readily available after cleavage of the diphosphate moiety. Various sesquiterpene synthases 

have been characterized using FDP isomers and analogues to determine the mechanism of carbocation 

quenching107,194,211,212 and also the initial ionization and isomerization of all-trans-FDP for cis–trans-

pathway-specific enzymes.175,176,193,213 However, the focus of most research has been directed towards 



 

 

determining the kinetic properties of different FDP isomers. Only recently has the investigative focus shifted 

towards using (2Z,6E)-FDP as a substrate for sesquiterpene cyclases, especially notable is the work on 

sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus.163 

7.3.1 Effects of geometry on multiproduct terpene synthase from Zea Mays 

To reveal further details of the TPS4 and TPS5 enzymatic mechanism, various isotopic analogs of 

geranyl- and farnesyl diphosphates were synthesized. These included geometric isomers of the critical C(2)-

C(3) bond) like [2-2H]- (2Z)- and [2,4,4,9,9,9-2H6]-(GDP) and [2-2H]- (2Z,6E)- and [2,4,4,13,13,13-2H6]-FDP 

using deuterium labels as metabolic probes for isotope sensitive branching. The interest was in whether the 

cyclization of (2Z)-isomers such as (2Z)-GDP and (2Z,6E) FDP would proceed via the same cascade as 

observed with their corresponding (E)-substrates. Here, the interest was to analyze by means of deuterium 

labeling how the substrate’s conformation affects the initial cyclization as well as the course and site of the 

individual protonation and deprotonation steps. The idea was to combine the knowledge gained from 

previous isotope sensitive branching studies to decipher the effects of substrate geometry on the reaction 

cascade.181 

7.3.2 Labelled stereoisomers as substrates 

[2-2H]- and [2,4,4,9,9,9-2H6]-GDP and [2-2H]- and [2,4,4,13,13,13-2H6]-FDP were prepared by 

modifying the protocol of Arigoni et al.214 Substrates were similar to the ones used in the previous study with 

deuterium atoms completely surrounding the C(3) cationic center of the key intermediates (Figure 17). The 

deuterium labels serve to investigate the alterations in product distribution that might occur as a consequence 

of changing the geometry of the C2-C3 double bond, which undergoes isomerization in the reaction 

sequence.  

 
 

Figure 17: (A) Isotope sensitive branching strategy with stereoisomers (B) of monodeuterated and hexadeuterated 
of (2Z)-GDP and (2Z, 6E) FDP. Isotope labeled with deuterium atoms completely surrounding the C(3) carbon of the 
substrate and of the key intermediates with isomerization of the C(2)-C(3) double bond were synthesized.  



 

 

7.3.3 Product distribution with geometric isomers 

When compared with our previous results,180 both TPS4 and TPS5 catalyze the cyclization of 

labeled (2Z,6E)-FDP and (2Z)-GDP showed only quantitative difference in volatile composition when 

compared to natural substrates. Interestingly, these enzymes exhibited much higher turnover with (2Z) 

substrates than with their natural (2E)-substrates and a reduced ratio of acyclic to cyclic products. The 

production of all C10 and C15 cyclic products requires an initial isomerization of the C(2)-C(3) double bond of 

the original substrate, The substrates of the (2Z)-series already possess the double bond in the correct 

configuration allowing the direct cyclization of the emerging carbocationic intermediate after ionization. The 

terpenoid profiles from (2E)-GDP and (2E,6E)-FDP substrates (Figure 18) were dominated by cyclic 

compounds with terpinane/sabinane and bisabolane/sesquisabinane skeletons. This confirms that the 

formation of cyclic products follows the same pathway as the (2E)-isomer. A few recent examples also report 

(2Z,6E)-FDP results comparable to those obtained from the FDP.146,188,215  

 

Figure 18: (A) Comparison of total rate of sesquiterpene and (B) Ratio acyclic/cyclic volatiles formation with 
incubations of deuterated (E)/(Z)-GDP and FDP with TPS4-B73 and TPS5-Delprim. (A) Comparison of relative 
rates of sesquiterpene volatile formation from Monodeuterated substrates (7c, 8c) and hexadeuterated substrates. 
Compounds 7 and 8 represent (E) and (Z)-FDP respectively. Sesquiterpene production increased by ~200% and the 
corresponding increase was ~150% with the hexadeuterated substrate when compared with unlabeled (2E,6E)-FDP.  (B) 
There was a distinct absence of acyclic products in case substrate with (2Z)-substrates was seen in both monoterpenes and 
sesquiterpenes. 

The rate of monoterpene production showed a 30% increase upon incubation with (2Z)-GDP and 

17% with hexadeuterated substrates in comparison to their corresponding unlabeled (2E)-analogues. The 

difference in the rates of volatile formation was even more pronounced in the case of sesquiterpene. 

Sesquiterpene production increased by ~200% and the corresponding increase was ~150% with the (2Z,6E)-

hexadeuterated substrate when compared with unlabeled (2E,6E)-FDP (Figure 18A). The increased turnover 



 

 

clearly indicates that the isomerization is the rate limiting step in the reaction cascade with natural substrates. 

Docking studies had postulated the presence of two pockets, where the early steps of the catalytic sequence 

including dephosphorylation, isomerization, and cyclization, up to the formation of the bisabolyl carbocation, 

all take place in pocket-I of the enzyme.188 Then on possibly crossing a low energy barrier to pocket II, they 

are converted to a larger proportion of cyclic products than the (2E)-substrates. This could explain not only 

the reduction in acyclic substrates and smaller kinetic isotope effects, but also the availability of more energy 

that can be utilized for processes in pocket II. This strong preference for cyclic products and huge turnover 

can be exploited to direct biosynthesis for other terpene synthases already known for their catalytic 

promiscuity.106 

7.4 Development of co-crystallization candidate (Manuscript III) 

There is a lack of clear understanding about the structural characteristics that lead to catalytic 

promiscuity in multiproduct terpenoid synthases, as so far none of them has been successfully 

crystallized.128 Examples of trans-pathway-specific enzymes with solved crystal structures include 

pentalenene-synthase from Streptomyces UC5319,216 5-epi-aristolochene-synthase from Nicotiana-

tobaccum,112,217 and aristolochene-synthase from Aspergillus terreus and Penicillium 

roqueforti.116,218,219 Trichodiene-synthase from F. sporotrichoides,220,221 and very recently, -cadinene-

synthase from Gossypium arboreum222 are the only cis–trans-pathway-specific sesquiterpene synthases with 

solved crystal structures. The closest candidate to a multiproduct terpene synthase with a confirmed crystal 

structure is sesquiterpene cyclase epi-isozizaene synthase (EIZS) from Streptomyces coelicolor. However, it 

is not multiproduct synthase in true sense as its product profile has about 79% epi-isozizaene from the 

substrate FDP.129-131 

Substrate analogues have been successfully utilized to probe the specificity of the enzymes and to 

obtain a substrate-bound crystal structure of enzymes. Especially, sulphur substitution has been used quite 

successfully for co-crystallization with different terpene synthases.223,224 Fluorinated substrates have been 

successfully used to study the cyclization mechanism of several terpene synthases, in particular the 

aristolochene synthases.225,226 Thus, non-natural substrates have shown great potential as substrates or 

inhibitors to probe mechanisms and can be further utilized for multiproduct terpene synthases. 

 

Figure 19: GDP analogues containing bromo susbtitution (3-BrGDP) and FDP analogue (3-BrFDP). Bromo 
substitution was chosen because of the geometrical similarity with the methyl group at C3 position.  



 

 

Based on the information obtained from mechanistic studies of MtTPS5,149 a set of easy to 

synthesize functional analogues of prenyl diphosphates was designed for this enzyme that could destabilize 

the intermediate allylic carbocation. The brominated GDP analogue (3-BrGDP) and FDP analogue (3-

BrFDP) (Figure 19) were chosen because of their geometrical similarity and virtually identical van der Waals 

radius (ca. 2.0 , 227 Figure 20) with the methyl group at C3 position. The highly electronegative bromine 

atoms can strongly influence the stability of neighboring carbocationic species but pose no additional steric 

differences in comparison with corresponding natural substrates. These analogues could either provide novel 

sesquiterpenes, or they could act as potent inhibitors of MtTPS5. In case of inhibition it can be used to 

provide an active site resolved crystal structure.167 Kinetic studies demonstrated that these compounds 

constitute potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow reversibility. 

 

Figure 20: Docking arrangement of FDP (left) and 3-BrFDP (5b) (right) in the active site of the X-ray structure of 
aristolochene synthase (4KUX). The van der Waals radii are shown by a cloud around CH3 and Br groups. 

However, in case of 3-bromo analogues the huge endothermic energy required for the formation of 

the intermediate allyl cation prevents its formation, and hence, subsequent energy gain by cyclization is not 

possible. However, 3-Br GDP and 3-Br FDP are able to bind to the active site of enzyme because there is no 

steric difference in comparison with the natural substrates. Since the dissociation of the diphosphate moiety is 

the first step, common to all prenyl diphosphate based terpenoid synthases and cyclases; we expect these 

simple analogues broadly applicable inhibitors. Preliminary experiments with isoprenyl diphosphate synthase 

1 (PcIDS1)228 from leaf beetle Phaedon cochleariae showed no catalytic formation of FDP upon incubation 

with the substrates GDP and IDP. Initial results indicate a possible co-crystallization of this enzyme with 3-

Br-GDP, but this can only be confirmed after solving the crystal structure. Due to the structural similarity 

between various terpene synthases and the similarity in behavior of the active site, we expect these 3-bromo 

isoprenoids to constitute ideal probes for crystal structure studies. The 3-bromo substituent provides 



 

 

additional advantage of determining the absolute configuration based on the anomalous dispersion 

effect.229,230  

7.5 Substrate geometric isomers as a tool for novel biosynthetic 
products (Manuscript IV) 

 
Mechanistic studies of the catalytic cascade of MtTPS5 with (2E,6E)–FDP showed that the enzyme is 

capable of synthesizing cadalane sesquiterpenes in two different ways.149 Here, the isomerization of the 

initially formed (2E,6E)-farnesyl cations to nerolidyl diphosphate (NDP) and further to (2Z,6E)–farnesyl 

(Figure 4, orange) is not preferred. Interestingly, (2Z,6E)-FDP on incubation with MtTPS5 provides a 

completely new array of products. A large proportion of the released compounds (~ 33%) have a cadalane 

skeleton, which is in contrast to the (2E,6E)-FDP products which exhibit the opposite absolute configuration 

at the bridgehead carbon atoms. This trend is unlike multiproduct terpene synthase TPS4 and TPS5 from Zea 

mays which generate the same product profile with both substrates but with quantitative differences. The 

determination of the absolute configurations of some products helped with reconstruction of the 

stereochemical course of the reaction cascade from the starting conformation of the (Z)-isomeric substrate. 

The highly reactive (2Z,6E)–farnesyl cation, which is formed upon cleavage of the diphosphate group 

predominantly undergoes a C1-C11 ring closure to the (2Z,6E)-humul-10-yl cation (~57%). This (2Z,6E)-

Humul-1-yl cation undergoes deprotonation to form -humulene, and on further reaction with water, the main 

product humulan-6,9-dien-3-ol is formed. This product is not observed at all in case of the incubation of 

(2E,6E)-farnesyl diphosphate with MtTPS5. 

The mechanistic considerations of product formation, starting from (2E,6E)- and (2Z,6E)-FDP 

clearly show a close correlation between the two reaction cascades. The essential elements such as 1,3-

hydride shift, initial 1,10- or 1,11- cyclization and the construction of bicyclic compounds by a second ring 

closure are found in both reaction mechanisms. The synthase bypasses the geometric restriction which 

prevents the direct formation of cadalanes from the (2E)-isomer substrate to a lesser extent over an 

alternative path (Figure 21). The isomerization of (2E,6E)- to (2Z,6E)–farnesyl cation is realized via the 

rotation of the C2-C3 single bond of the tertiary allylic intermediate. This leads to the formation of major 

products with humulane and himachalane skeletons for (2Z,6E)–FDP which are not favored in case of using 

(2E,6E)–FDP as a substrate. 



 

 

 

Figure 21: Possible cyclization pathway for MtTPS5 with (2Z,6E)–FDP and natural (2E,6E)–FDP. Use (2Z,6E)–
FDP as substrate lead to an alternate cyclization to majority humulane and himachalane products. This was in contrast to 
cadalenes skeleton as major products as seen with natural stereoisomers (2E,6E)–FDP. 

When using (2Z,6E)–farnesyl diphosphate as a substrate not only were the majority of the products 

novel when compared to (2E,6E)–FDP, but some peaks in the product profile could not be matched to any of 

the known compounds in the database. This was interesting as three peaks depicting sesquiterpenes could 

lead us to totally new compounds as all our efforts to match the mass data with known Kovats indices were 

futile. This interesting prospect forms the basis for efforts to isolate the compounds associated with these 

three unknown peaks using preparative gas chromatograph and further elucidating the structures by NMR. 

The most interesting aspect of these results is the fact that we can easily alter the product profile of a 

multiproduct enzyme by making changes in the double bond geometry of substrates. In fact, as observed in 

this case with MtTPS5, products with novel skeletons can be obtained from these substrates. Hence, in the 

quest for novel molecules we should definitely put a major focus on the substrate and altering its features 

apart from the focus on genetic mutation in the enzyme. The knowledge about multiproduct terpene 

synthases gained from this thesis can be utilized to engineer enzymes for future. 

 



 

 

 

 

 

 

 

 

 

 

 
 

8 Summary 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Terpenes constitute the largest and most diverse class of natural products, with about 55,000 

compounds characterized throughout all forms of life serving diverse roles in primary as well as secondary 

metabolism.1,128,231 The wealth of terpene carbon skeletons can be attributed at least in part to a highly 

promiscuous class of enzymes known as the terpene synthases.44 In addition to the high fidelity enzymes that 

produce only a single product, there are multiproduct terpene synthases, which generate a bouquet of acyclic 

and cyclic products from an acyclic precursor.106 In order to study the catalytic promiscuity and the 

mechanistic cascade of the reaction pathways, three multiproduct sesquiterpene synthases were 

heterologously expressed and purified.145,183 Both TPS4 and TPS5 from Zea mays and MtTPS5 from 

Medicago truncatula generate a complex mixture of more than 20 sesquiterpenes and 10 monoterpenes.149,188 

Research over the last decade has been focused towards using site-directed mutagenesis to decipher the 

complex catalytic capabilities of multiproduct terpene synthases.232,233 However, the minor differences in 

amino acid sequences that exist between terpene synthases are insufficient to explain their multiproduct 

nature.76,128 Furthermore, the lack of a defined crystal structure hinders their structural understanding. 

Research in this thesis was aimed at employing substrate analogs to evaluate the catalytic promiscuity of the 

multiproduct terpene synthases. 

 

Scheme 1: Isotope sensitive branching strategy for multiproduct terpene synthases 

This research utilized isotopically sensitive branching, defined as the change in the relative ratios of 

products from the same intermediates due to isotopic substitution in multiproduct enzymes.234 This has been 

especially effective in the investigation of the multiproduct reaction cascade of terpene synthases TPS4-B73 

and TPS5-Delprim from Zea mays.180 Labeled substrates with deuterium atoms completely surrounding the 

cationic center at C(3) of the key intermediates were used as metabolic probes (Scheme 1). This study not 

only confirmed the mechanistic details of the reaction cascade of multiproduct terpenoid synthases but also 

the rate-limiting effects of the final deprotonation steps en route to mono- and sesquiterpenes. The primary 

kinetic isotope effects on terminating deprotonations and lower stabilization of the reactive intermediates by 

hyperconjugation led to an enhanced formation of alcohols instead of olefinic products. 



 

 

In addition, deuterium labeled substrates were used to investigate the alterations in product 

distribution and rate limiting effects that occur as a consequence of changing the geometry with (2Z,6E)-FDP 

(Scheme 2) resembling the nerolidyl diphosphate (NDP) intermediate generated during the catalytic 

cascade.181 In this work, the effects of alternate substrate stereochemistry as well as isotope effects on the 

product distribution on multiproduct terpene cyclase were investigated.  

 

Scheme 2: Isotope sensitive branching strategy to study the effects of substrate geometry 

There was indeed a major influence of the (2Z)-isomers on the enzymatic cascade of terpene 

synthases TPS4-B73 and TPS5-Delprim from Zea mays as confirmed by deuterium labeling of products. 

Interestingly, the multiproduct terpene synthase TPS4 and TPS5 generate the same product profile but with 

increased preference for cyclic products.181 Major increase in enzymatic turnover that was observed with 

(2Z)-substrates emphasizes the rate limiting effect of the initial isomerization step in the reaction cascade. 

These results suggest that substrate geometry can be used as a tool to optimize the biosynthetic reaction 

cascade towards valuable cyclic terpenoids. 

In contrast, use (2Z,6E)-FDP as a substrate with MtTPS5 from Medicago truncatula showed a 

completely different product profile. In fact majority of products are not observed with incubation of 

(2E,6E)-FDP with MtTPS5. The highly reactive (2Z,6E)–farnesyl cation predominantly undergoes (~57%) a 

C1-C11 ring closure to the (2Z,6E)-humul-10-yl cation. This cation undergoes deprotonation to form -

humulene, and on further reaction with water, leads to the main product humula-6,9-dien-3-ol. The rest of 

products shared the cadalane backbone as with (2E,6E)-FDP but with the opposite absolute configuration of 

the bridgehead carbon atoms. This demonstrates the possibility of using substrate geometry as tool to 

generate novel products with multiproduct terpene synthases. 

There exists a clear lack of understanding about the structural characteristics of multiproduct terpene 

synthases due to absence of defined crystal structures. In order to obtain an active site resolved structure, 3-



 

 

bromo analogs of geranyl diphosphate and farnesyl diphosphate were evaluated as substrates.182 They were 

found to be highly potent competitive inhibitors of the MtTPS5 enzyme with fast binding and slow 

reversibility. These molecules might considerably enhance the chances for obtaining a co-crystal structure 

with multiproduct terpene synthases and other terpene synthases.  

With this work, substrate analogs as metabolic probes were successfully used to confirm the highly 

complex reaction cascade of multiproduct terpene synthases down to the last deprotonation step. Especially 

interesting was the finding that substrate geometry can be used to enhance the enzymatic turnover and divert 

the reaction cascade towards cyclic products. Moreover, in case of MtTPS5 these substrates generated 

completely novel cyclic products as compared to natural substrates. In order to decipher the structural 

features that define the structural diversity a co-crystallization candidate has also been developed. 

Consequently, the catalytic promiscuity of multiproduct terpene synthases can be employed to design better 

biocatalysts with improved turnover that also offer the possibility to generate novel cyclic products.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 

 
9 Future Perspectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Multiproduct terpene synthases are highly promiscuous enzymes with catalytic capabilities to 

convert acyclic prenyl diphosphates into a complex bouquet of cyclic and acyclic products. In this thesis, 

alternative substrates were used as a tool to evaluate the details of complex reaction cascade and also to fine-

tune the biosynthetic cascade in favor of certain class of products. Whereas, some alternate stereoisomers 

demonstrate the possibility of improved enzymatic turnover, others served as precursors to completely new 

array of products not seen with natural substrates. The knowledge gained from this research can be further 

expanded to better understand multiproduct terpene synthases and mould them into highly efficient catalysts 

for future applications. 

Isotope sensitive branching 

Isotope sensitive branching is a powerful tool for studying the minute mechanistic details of 

complex biosynthetic cascade and carbocationic intermediates through which the final products are formed. 

In the current work, the focus was on the effect of isotopic substitution on initial steps by surrounding the C3 

carbon atom and confirms the biosynthetic cascade of TPS4 and TPS5 of Zea mays. The fluctuations in 

product composition and isotope labels on final products confirm the reaction scheme. In order to understand 

the theoretical basis of enhanced formation of alcohols and kinetic isotope effects, a collaborative work has 

been initiated with group of Dr. Lubomír Rulíšek, Institute of Organic Chemistry and Biochemistry, Prague. 

This work can be expanded to other multiproduct terpene synthases with multiple reaction cascades like 

MtTPS5 from Medicago truncatula. In order to decipher individual steps in such biosynthetic cascades, the 

deuterium labels can be shifted to surround carbon atoms at different positions. These metabolic probes can 

be used to confirm the complicated cyclization pathways of individual products of other multiproduct terpene 

synthases. 

Substrate geometry as a biosynthetic tool  

The multiproduct terpene synthases from Zea mays and Medicago truncatula both accept unnatural 

precursors with differing double bond geometry as substrates. In case of multiproduct terpene synthases from 

Zea mays, the product composition changes only in quantitative terms, whereas in the case of Medicago 

truncatula these substrates lead to novel products, some of them possibly unknown. In both cases, the 

substrate used was (2Z,6E) FDP which underwent enhanced enzymatic turnover. In order to further probe the 

catalytic promiscuity of multiproduct terpene synthases, they were incubated with another geometric isomer 

(2E,6Z) FDP. Interestingly, with MtTPS5 this substrate also led to multiproduct blend of terpenoids, 

preliminary GC-MS analysis did not result in their identification with Kovats indices, suggesting new 

sesquiterpene products. This clearly demonstrates the flexibility of multiproduct synthase to accept unnatural 



 

 

stereoisomers as substrates. The isolation of these unknown compounds by preparative GC and elucidation 

their structures is planned for future. The scope of this research will be further expanded by testing the 

catalytic promiscuity of other multiproduct terpene synthases as well as library of other terpene synthases 

using these artificial substrates. 

Co-crystallization candidate 

 The 3-bromo substrate analogs showed strong competitive inhibition of the MtTPS5 enzyme which 

makes them ideal tools for co-crystallization and structural analyses. In an ongoing collaboration with 

crystallography group of Prof. Dr. Michael Groll at Technische Universität München, there are preliminary 

results indicating the usefulness of 3-bromo substrates as co-crystallization candidate with FDP-synthase 

PcIDS1enzyme from Phaedon cochleariae. This success indicates possibility of 3-bromo substrates as a co-

crystallization candidate for multiproduct terpene synthases. This could provide the structural basis of their 

multiproduct nature in spite of their high sequence similarity with single product enzymes. This knowledge is 

critical for attempts to engineer highly promiscuous multiproduct enzymes towards producing desired 

products. 

 The focus of future research with multiproduct terpene synthases should be directed towards 

gaining more knowledge about the structural basis of this chemical diversity. This is possible by obtaining 

the crystal structure of multiproduct terpene synthases and further connecting it with current knowledge 

about their catalytic promiscuity by using these alternate substrates. More structural knowledge about active 

site flexibility that results in alternative conformations of the prenyl diphosphate substrate and later reaction 

intermediates is critical. This grasp of active site-alternate substrate interactions would form the basis of 

designing terpene synthases as future catalysts for synthesizing complicated cyclic terpenoids on demand. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 
 
 
 
 

 
 

10  Zusammenfassung 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Mit ungefähr 55.000 Verbindungen bilden die Terpene die größte und vielfältigste Klasse der 

Naturstoffe welche in unterschiedlichsten Funktionen innerhalb des Primär- oder Sekundärmetabolismus in 

allen Lebensformen verbreitet sind.1,128,231 Die Vielfalt der terpenoiden Kohlenstoffgrundgerüste ergibt sich 

zumindest teilweise aus der Promiskuität einer als Terpensynthasen bekannten Klasse an Enzyme.44 Neben 

hochgradig spezifischen Enzymen welche ausgehend von acylischen Vorstufen ausschließlich ein einziges 

Produkt liefern existieren auch Multiprodukt Terpensynthasen welche ein Gemisch acyclischer und 

cyclischer Produkte erzeugen.106 Um die katalytische Promiskuität und die zugrundeliegende mechanistische 

Reaktionskaskade zu untersuchen wurden drei Multiprodukt Sesquiterpensynthasen heterolog exprimiert und 

aufgereinigt.145,183 TPS4 und TPS4 aus Zea mays und MtTPS5 aus Medicago truncatula produzieren eine 

komplexe Mischung aus mehr als 20 Sesquiterpenen oder 10 Monoterpenen.149,188 Untersuchungen innerhalb 

des letzten Jahrzehnts haben sich insbesondere darauf konzentriert die komplexen katalytischen 

Eigenschaften der Multiprodukt Terpensynthasen mittels gezielter Mutagenese zu entziffern.232,233 Die 

geringen Unterschiede in Aminosäuresequenzen zwischen Terpensynthasen können ihren Multiprodukt 

Charakter allerdings nicht erklären.76,128 Darüber hinaus wird unser Verständnis durch den Mangel an 

definierten Kristallstrukturen stark eingeschränkt. Die Forschungsarbeit dieser Dissertation zielte daher 

darauf ab die katalytische Promiskuität der Multiprodukt Terpensynthasen mittels Substratanaloga zu 

untersuchen.  

 

Schema 1: Isotopensensitive Verzweigungs Strategie für Multiprodukt Terpensynthasen. 

In dieser Arbeit wurde die isotopensensitive Aufspaltung in Multiprodukt Enzymen untersucht, 

welche als die auf eine Isotopensubstitution basierende Änderung der relativen Verhältnisse zwischen zwei 

aus der gleichen Vorstufe hervorgehenden Produkte definiert ist.234 Dieser Ansatz hat sich insbesondere für 

die Untersuchung der Multiprodukt Reaktionskaskade der Terpensynthasen TPS4-B73 und TPS5-Delprim 

aus Zea mays als besonders effektiv erwiesen.180 Markierte Substrate in denen das kationische Zentrum an 

C(3) in den Schlüsselintermediaten komplett mit Deuterium Atomen umgeben ist wurden als metabolische 

Sonden eingesetzt (Schema 1). Diese Untersuchungen bestätigten nicht nur mechanistische Details der 

Reaktionskaskade in Multiprodukt Terpensynthasen sondern auch die finale Deprotonierung als den 



 

 

geschwindigkeitsbestimmenden Schritt bei der Bildung von Mono- und Sesquiterpenen. Die primären 

kinetischen Isotopeneffekte der terminierenden Deprotonierungen und die geringere Stabilisierung der 

reaktiven Intermediate mittels Hyperkonjugation führten zu einer gesteigerten Bildung von Alkoholen auf 

Kosten von olefinischen Produkten. 

Darüber hinaus wurden Deuterium-markierte Substrate benutzt um Veränderungen in der 

Produktverteilung und die geschwindigkeitsbestimmenden Effekte zu bestimmen welche als Konsequenz 

einer geänderten Geometrie in (2Z,6E)-FDP (Schema 2) beobachtet werden, wobei dieses ein Substrat 

darstellt welches dem innerhalb der Reaktionskaskade generierten Nerolidyldiphosphat (NDP) ähnelt.181 In 

dieser Arbeit wurden die Effekte der alternativen Substratgeometrie sowie die Isotopen Effekte auf die 

Produkt Verteilung in Multiprodukt Terpencyclasen untersucht.  
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Schema 2: Isotopen sensitive Verzweigung Strategie zur Untersuchung der Auswirkung geänderter 
Substrat Geometrien.  

Es gab in der Tat einen großen Einfluss der (2Z)-isomere auf die enzymatische Reaktionskaskade 

der Terpensynthasen TPS4-B73 und TPS5-Delprim aus Zea mays was durch Deuterium-Markierung der 

Produkte gezeigt wurde. Interessanterweise ergeben die Multiprodukt Terpensynthasen TPS4 und TPS5 

dasselbe Produktprofil jedoch mit einer gesteigerten Präferenz für cyclische Produkte.181 Die große Zunahme 

der enzymatischen Umsetzung welche mit (Z)-Substraten beobachtet wurde belegt die Bedeutung der 

anfänglichen Isomerisierung als geschwindigkeitsbestimmenden Schritt für die gesamte Reaktionskaskade. 

Diese Ergebnisse weisen darauf hin, dass die Substratgeometrie als Werkzeug verwendet werden kann um 

biosynthetische Reaktionskaskaden für die Darstellung wertvoller cyclischer Terpene zu optimieren.  

Im Gegensatz hierzu ergibt das (2Z,6E)-FDP als Substrat für MtTPS5 aus Medicago truncatula ein 

komplett verändertes Produktprofil. Tatsächlich werden die Mehrheit der Produkte nicht beobachtet wenn 

stattdessen (2E,6E)-FDP mit MtTPS5 inkubiert wird. Das hochreaktive (2Z,6E)-Farnesyl Kation unterläuft 

hauptsächlich einen C1-C11 Ringschluss zu dem (2Z,6E)-Humul-10-yl Kation (~57%). Dieses Kation 

erleidet dann eine Deprotonierung unter Bildung des -Humulens, und eine weitere Reaktion mit Wasser 



 

 

führt zum Humula-6,9-dien-3-ol als Hauptprodukt. Die weiteren Produkte besitzen wie die mit (2E,6E)-FDP 

gebildeten ein Cadalan-Grundgerüst, weisen aber eine unterschiedliche relative Konfiguration auf. Dies zeigt 

die Möglichkeit die Substratgeometrie als ein Mittel zu verwenden um mit Hilfe von Multiprodukt 

Terpensynthasen neue Produkte herzustellen.  

Unser Verständnis für die strukturellen Charakteristika von Multiprodukt Terpensynthasen ist stark 

begrenzt durch das Fehlen an definierten Kristallstrukturen. Um die Struktur des aktiven Zentrums 

aufzulösen wurden die 3-Brom Analoga des Geranyldiphosphat und des Farnesyldiphosphat als Substrate 

untersucht.182 Dabei wurde entdeckt dass diese sehr potente kompetitive Inhibitoren des MtTPS5 Enzymes 

mit schneller Bindung und langsamer Reversibilität darstellen. Diese Moleküle könnten unsere Chancen Co-

Kristalle mit Multiprodukt Terpensynthasen Innerhalb dieser Arbeit wurden Substrat Analoga erfolgreich als 

metabolische Sonden verwendet um die hochkomplexe Reaktionskaskade der Multiprodukt Terpensynthasen 

bis zum abschließenden Deprotonierungs-Schritt hin zu untersuchen. Besonders interessant war die 

Entdeckung, dass die Substratgeometrie verwendet werden kann um die enzymatische Umsetzungsrate zu 

erhöhen und die Reaktionskaskade zu cyclischen Produkten hin umzuleiten.  

Darüber hinaus konnte gezeigt werden, dass diese Substrate im Gegensatz zu den natürlichen 

Substraten mit MtTPS5 vollständig neue cyclische Produkte ergeben. Um die strukturellen Eigenschaften 

welche die strukturelle Diversität definieren zu entziffern wurde auch ein Kandidat für eine Co-Kristallisation 

entwickelt. Dementsprechend kann die Promiskuität der Multiprodukt Terpensynthasen verwendet werden 

um bessere Biokatalysatoren mit verbesserten Umsatzraten zu entwickeln, welche darüber hinaus auch die 

Möglichkeit anbieten neue cyclische Produkte zu generieren.  
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(Note: 1H, 13C and 31P NMR and IR spectra of the synthetic compounds are attached in CD 

at the end this thesis) 
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(In the attached CD) 
 

1H, 13C spectra of the synthetic compounds 

[2,2-2H2]-Trimethylsilylacetic acid (2)   

[1,1,1,3,3-2H5]-6-Methyl-hept-5-en-2-one (1b)  

 [1,1,1,3,3-2H5]-6,10-Dimethyl-undeca-5,9-dien-2-one (1d)  

Methyl (2E)-[2-2H]-3,7-Dimethylocta-2,6-dienoate (3a)   

Methyl (2Z)-[2-2H]-3,7-Dimethylocta-2,6-dienoate (4a)   

Methyl (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate (3b)  

Methyl (2Z)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate (4b)  

Methyl (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienoate (3c)  

Methyl (2Z,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienoate (4c)  

Methyl (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate (3d)  

Methyl (2Z,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate (4d)  

(2E)-[2-2H]-3,7-Dimethylocta-2,6-dien-1-ol (5a)  

 (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dien-1-ol (5b)  

 (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol (5c)  

 (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol (5d)  

Trisammonium (2E)-[2-2H]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7a)  

Trisammonium (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7b)  

Trisammonium (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate (7c)  



 
 

S  | 4 
 

 

Trisammonium (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienyl  

Diphosphate (7d)  

31P NMR spectra of the synthetic compounds 

Trisammonium (2E)-[2-2H]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7a)  

Trisammonium (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7b)  

Trisammonium (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate (7c)  

Trisammonium (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienyl  

Diphosphate (7d)  

IR spectra of the synthetic compounds 

[2,2-2H2]-Trimethylsilylacetic acid (2)        

[1,1,1,3,3-2H5]-6-Methyl-hept-5-en-2-one (1b)  

 [1,1,1,3,3-2H5]-6,10-Dimethyl-undeca-5,9-dien-2-one (1d)  

Methyl (2E)-[2-2H]-3,7-Dimethylocta-2,6-dienoate (3a) and  

Methyl (2Z)-[2-2H]-3,7-Dimethylocta-2,6-dienoate (4a)   

Methyl (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate (3b) and  

Methyl (2Z)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate (4b)  

Methyl (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienoate (3c) and  

Methyl (2Z,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienoate (4c)  

Methyl (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate (3d) and 

Methyl (2Z,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate (4d)  

Trisammonium (2E)-[2-2H]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7a)  

Trisammonium (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienyl Diphosphate (7b)  

Trisammonium (2E,6E)-[2-2H]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate (7c)  

Trisammonium (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienyl  

Diphosphate (7d)  



 
 

S  | 5 
 

 

General Methods. Reactions were performed under Ar. Solvents were dried according to 

standard procedures. 1H, 13C and 31P NMR were recorded at 400 MHz. Chemical shifts of 1H, 

13C and 31P NMR are given in ppm ( ) based on solvent picks. CDCl3: 7.27 (1H NMR) and 77.4 

ppm (13C NMR). D2O/ND4OD: 4.79 (1H NMR); 13C NMR and 31P NMR were referenced to 

external standard 3-(trimethylsilyl)-propionic acid-d4 sodium salt (TSP; 3 % in D2O) and 

phosphoric acid (H3PO4, 10 % in D2O), respectively. IR: Bruker Equinox 55 FTIR 

spectrophotometer.  

 

Assay for terpene synthase activity. Each 200 μL assay contained 50 μL of the bacterial 

extract in assay buffer (10 mM 3-(N)-2-hydroxypropane sulfonic acid (Mopso), pH 7.0, 1 mM 

DTT, and 10 % (v/v) glycerol) with 350 μM substrate, 7.5 mM MgCl2, 1.5 mM NaWO4, and 

0.75 mM NaF in a 2 ml screw-capped glass vial. The assay was overlaid with 100 μL pentane 

containing 2.5 μM (E)- -caryophyllene (Aldrich, 98 % pure) as an internal standard and 

incubated for 20 min at 30 oC. The reaction was stopped by mixing for 1 min, and an aliquot of 

the pentane layer was analyzed by GC-FID.  

Gas chromatography. A Hewlett-Packard model 6890 gas chromatograph was employed with 

the carrier gas He at 1 ml min-1, splittless injection (injector temperature: 220 oC, injection 

volume: 2 μL), a DB-WAX column (polyethylene glycol, 30 m  0.25 mm ID  0.25 μm film 

thickness, J&W Scientific, Folsom, CA, USA) for sesquiterpenes and a DB5-MS column (30 m 

 0.25 mm ID  0.25 μm film thickness, J & W Scientific) for monoterpenes, respectively. 

Temperature was programmed from 50 oC (3 min hold) at 7 oC min-1 to 240 oC (2 min hold). 

Quantification was performed with the trace of a flame ionization detector (FID) operated at 250 

oC.  
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Trisammonium (E)-Geranyl and (2E,6E)-Farnesyl Diphosphates. Unlabeled GDP and 

FDP were synthesized from commercial geranyl and farnesyl chloride (Aldrich) respectively, 

according the phosphorylation procedure described above. 

 

Heterologous expression of terpene synthases. The open reading frames of tps4-B73 and 

tps5-Del1 were cloned as EcoRI-NotI fragments and inserted into the bacterial expression vector 

pHis8-3 which provided the expressed proteins with a His-tag at the N-terminal [23]. The 

constructs were transformed into the Escherichia coli strain BL21 (DE3) and fully sequenced to 

avoid errors introduced by DNA amplification. The recombinant proteins TPS4 and TPS5 were 

purified from E. coli as previously described [9]. 
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Product distribution of main monoterpenes from incubations of deuterated GDP with 

TPS4-B73 and TPS5-Delprim from maize (Zea mays) 

 

enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-GDPc E-(1D)-GDP 
7a

Z-(1D)-GDP 
8a

E-(6D)-GDP 
7b 

Z-(6D)-GDP 
8b

TPS4 

-Thujene (M1)* 
 

15.4 ± 0.5 
(3.3) 

15.6 ± 0.2 
(3.1) 

20.8 ± 0.8 
(3.3) 

5.0 ± 0.0 
(1.2) 

5.7 ± 0.1 
(1.0) 

Sabinene (M2)* 
 

39.7 ± 1.2 
(8.4) 

41.8 ± 0.3 
(8.4) 

63.1 ± 0.6 
(9.9) 

18.0 ± 0.9 
(4.2) 

31.4 ± 0.8 
(5.3) 

-Myrcene (M3) 
 

42.6 ± 2.0 
(9.1) 

42.9 ± 0.5 
(8.6) - 26.9 ± 0.6 

(6.4) - 

(S)-(-)-Limonene (M4) 
 

101.1 ± 3.5 
(21.5) 

100.9 ± 1.6 
(20.3) 

245.9 ± 3.4 
(38.6) 

95.2 ± 2.1 
(22.5) 

236.3 ± 4.3 
(39.6) 

Sabinene hydrate (M5)** 
 

26.7 ± 1.2 
(5.7) 

31.2 ± 1.0 
(6.3) 

38.8 ± 1.3 
(6.1) 

39.6 ± 0.7 
(9.3) 

62.6 ± 1.2 
(10.5) 

-Terpinolene (M6) 
 

21.4 ± 0.4 
(4.5) 

22.4 ± 0.2 
(4.5) 

91.9 ± 1.4 
(14.4) 

21.7 ± 0.5 
(5.1) 

89.9 ± 2.3 
(15.1) 

Linalool (M7)* 
 

112.1 ± 4.2 
(23.9) 

128.5 ± 3.6 
(25.9) 

17.8 ± 1.0 
(2.8) 

115.8 ± 2.1 
(27.3) 

27.9 ± 0.6 
(4.7) 

-Terpineol (M8)* 
 

30.6 ± 1.7 
(6.5) 

34.9 ± 0.8 
(7.0) 

78.6 ± 3.8 
(12.3) 

29.7 ± 0.3 
(7.0) 

76.2 ± 1.2 
(12.8) 

Geraniol (M9) 
79.7 ± 3.3 

(17.0) 
78.7 ± 2.7 

(15.8) 
80.7 ± 3.0 

(12.6) 
71.3 ± 1.8 

(16.8) 
66.0 ± 0.9 

(11.1) 
a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes the 

geranyl diphosphate. * Stereoisomeric pairs chromatographically not resolved. ** Compound identified by mass spectra 
alone. 
 

Enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-GDPc E-(1D)-GDP 
7a

Z-(1D)-GDP 
8a

E-(6D)-GDP 
7b 

Z-(6D)-GDP 
8b

TPS5 

-Thujene (M1)* 
 

67.0 ± 4.5 
(2.5) 

66.3 ± 2.4 
(2.4) 

166.9 ± 3.1 
(5.0) 

18.4 ± 1.1 
(0.8) 

46.4 ± 1.1 
(1.5) 

Sabinene (M2)* 
 

303.9 ± 4.4 
(11.2) 

294.8 ± 3.5 
(10.7) 

644.1 ± 8.3 
(19.2) 

127.9 ± 1.5 
(5.4) 

316.7 ± 12.4 
(10.2) 

-Myrcene (M3) 
 

534.1 ± 14.6 
(19.6) 

498.0 ± 11.1 
(18.0) 

11.9 ± 1.6 
(0.3) 

348.1 ± 2.6 
(14.8) 

10.2 ± 2.9 
(0.3) 

(S)-(-)-Limonene (M4) 
 

570.0 ± 10.2 
(20.9) 

546.5 ± 6.3 
(19.8) 

1404.0 ± 12.1 
(42.0) 

500.4 ± 9.9 
(21.3) 

1383.4 ± 33.2 
(44.6) 

Sabinene hydrate (M5)** 
 

198.3 ± 13.2 
(7.3)

212.6 ± 2.3 
(7.7)

452.0 ± 4.7 
(13.5)

304.0 ± 10.2 
(12.9) 

648.9 ± 48.0 
(20.9)

-Terpinolene (M6) 
 

92.6 ± 2.8 
(3.4) 

89.0 ± 0.2 
(3.2) 

194.0 ± 4.7 
(5.8) 

86.7 ± 2.0 
(3.7) 

208.8 ± 8.0 
(6.7) 

Linalool (M7)* 
 

317.0 ± 23.2 
(11.6) 

339.4 ± 4.7 
(12.3) 

137.6 ± 18.5 
(4.1) 

332.2 ± 17.3 
(14.1) 

189.9 ± 15.4 
(6.1) 

-Terpineol (M8)* 
 

140.8 ± 11.5 
(5.2) 

157.9 ± 4.6 
(5.7) 

322.1 ± 34.73 
(9.6) 

135.3 ± 7.0 
(5.8) 

286.1 ± 20.2 
(9.2) 

Geraniol (M9) 
500.0 ± 47.3 

(18.4) 
559.2 ± 3.5 

(20.2) 
12.9 ± 4.1 

(0.4) 
495.8 ± 34.8 

(21.1) 
11.2 ± 0.4 

(0.3) 
a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes the 
geranyl diphosphate. * Stereoisomeric pairs chromatographically not resolved. ** Compound identified by mass spectra 
alone. 
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Product distribution of main sesquiterpenes from incubations of deuterated FDP with 

TPS4-B73 from maize (Zea mays) 

enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-FDPc E,E-(1D)-FDP 
7c

Z,E-(1D)-FDP 
8c

E,E-(6D)-FDP 
7d 

Z,E-(6D)-FDP 
8d

TPS4 

7-epi-Sesquithujene 
(S1) 

568.8 ± 25.4 
(18.5) 

713.2 ± 75.9 
(20.0) 

2395.1 ± 55.3 
(29.3) 

349.4 ± 19.4 
(12.1) 

1552.2 ± 30.6 
(16.8) 

Sesquithujene (S2) 
133.3 ± 6.0 

(4.3) 
165.4 ± 17.3 

(4.6) 
635.7 ± 14.5 

(7.8) 
55.9 ± 3.0 

(1.9) 
278.4 ± 5.0 

(3.0) 
(Z)- -Bergamotene 

(S3) 
30.5 ± 1.5 

(1.0) 
40.2 ± 4.0 

(1.1) 
66.3 ± 1.4 

(0.8) 
21.3 ± 1.1 

(0.7) 
42.2 ± 0.7 

(0.4) 
(E)- -Bergamotene 

(S4) 
47.8 ± 2.0 

(1.5) 
65.4 ± 7.1 

(1.8) 
203.8 ± 4.7 

(2.5) 
16.7 ± 0.8 

(0.6) 
80.8 ± 1.6 

(0.9) 

Sesquisabinene A (S5) 
72.9 ± 2.9 

(2.4) 
91.0 ± 8.0 

(2.5) 
328.3 ± 6.9 

(4.0) 
57.5 ± 3.0 

(2.0) 
246.7 ± 4.0 

(2.7) 

Sesquisabinene B (S6) 
29.9 ± 1.2 

(1.0) 
36.5 ± 2.9 

(1.0) 
175.7 ± 3.7 

(2.1) 
26.3 ± 1.3 

(0.9) 
144.2 ± 2.3 

(1.6) 

(E)- -Farnesene (S7) 
88.2 ± 3.4 

(2.9) 
112.5 ± 11.2 

(3.1) - 82.8 ± 4.2 
(2.9) - 

-Curcumene (S8)* 9.4 ± 0.3 
(0.3) 

11.0 ± 1.0 
(0.3) 

68.3 ± 3.4 
(0.8) 

25.2 ± 1.5 
(0.9) 

134.6 ± 2.0 
(1.4) 

Zingiberene (S9)* 27.6 ± 2.0 
(0.9) 

34.3 ± 4.5 
(1.0) 

122.6 ± 2.7 
(1.5) 

25.4 ± 1.3 
(0.9) 

105.3 ± 2.3 
(1.1) 

(S)- -Bisabolene (S10) 
584.4 ± 23.0 

(19.1) 
737.3 ± 74.2 

(20.7) 
1983.6 ± 42.8 

(24.3) 
573.1 ± 31.2 

(19.9) 
2053.2 ± 41.1 

(22.2) 

-Curcumene (S11)* 19.7 ± 0.6 
(0.6) 

23.0 ± 1.9 
(0.6) 

98.5 ± 5.0 
(1.2) 

68.5 ± 3.6 
 (2.4) 

299.9 ± 4.9 
(3.2) 

(E)- -Bisabolene (S12) 
45.0 ± 1.6 

(1.5) 
56.1 ± 5.5 

(1.6) 
152.1 ± 3.3 

(1.9) 
44.2 ± 2.4 

(1.5) 
159.9 ± 3.1 

(1.7) 
7-epi-Sesquithujene 

hydrate (S13)** 
174.0 ± 4.8 

(5.7) 
182.3 ± 0.9 

(5.1) 
809.6 ± 28.3 

(9.9) 
363.5 ± 20.9 

(12.6) 
1873.0 ± 22.9 

(20.3) 
Sesquithujene hydrate 

(S14)** 
116.7 ± 3.6 

(3.8) 
116.1 ± 0.7 

(3.2) 
505.9 ± 19.1 

(6.2) 
200.8 ± 11.8 

(7.0) 
1093.8 ± 25.3 

(11.8) 
(3R)-(E)-Nerolidol 

(S15) 
458.3 ± 13.8 

(14.9) 
481.4 ± 10.6 

(13.5) - 344.1 ± 21.1 
(11.9) - 

Unknown (A)*** 525.6± 14.7 
(17.1) 

550.2 ± 2.8 
(15.4) 

7.1 ± 1.4 
(0.1) 

411.3 ± 23.6 
 (14.3) 

8.12 ± 0.7 
(0.1) 

Unknown (B)*** 29.8 ± 0.9 
(1.0) 

30.9 ± 0.1 
(0.9) 

148.9 ± 6.7 
(1.8) 

69.8 ± 4.1 
(2.4) 

393.3 ± 6.9 
(4.2) 

Unknown (C)*** 51.7 ± 2.4 
(1.7) 

51.6 ± 0.7 
(1.4) 

229.2 ± 10.2 
(2.8) 

80.8 ± 4.7 
(2.0) 

487.4 ± 8.5 
(5.3) 

a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes the 
geranyl diphosphate. * Absolute configuration of the stereoisomeric pairs uncertain. ** Hypothetic structure. Compounds 
identified by mass spectra alone. *** Unknown oxygenated cyclic sesquiterpenes. 
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Product distribution of main sesquiterpenes from incubations of deuterated FDP with 

TPS5-Delprim from maize (Zea mays) 

 

enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-FDPc E,E-(1D)-FDP 
7c

Z,E-(1D)-FDP 
8c

E,E-(6D)-FDP 
7d 

Z,E-(6D)-FDP 
8d

TPS5 

7-epi-Sesquithujene 
(S1) 

196.6 ± 2.0 
(2.0) 

200.4 ± 2.1 
(2.0) 

1035.7 ± 14.6 
(3.9) 

132.0 ± 5.1 
(1.2) 

633.0 ± 13.7 
(2.4) 

Sesquithujene (S2) 
2854.3 ± 28.8 

(29.3) 
2967.0 ± 35.2 

(29.2) 
8442 ± 129.9 

(32.3) 
1265.8 ± 32.8 

(11.6) 
3497.7 ± 95.7 

(13.2) 
(Z)- -Bergamotene 

(S3) 
245.4 ± 2.4 

(2.5) 
268.4 ± 2.7 

(2.6) 
484.0 ± 7.1 

(1.8) 
134.8 ± 2.8 

(1.2) 
209.8 ± 5.2 

(0.8) 
(E)- -Bergamotene 

(S4) 
33.5 ± 0.4 

(0.3) 
36.1 ± 0.5 

(0.3) 
360.7 ± 5.9 

(1.4) 
23.6 ± 2.0 

(0.2) 
274.4 ± 9.0 

(1.0) 

Sesquisabinene A (S5) 
31.8 ± 0.4 

(0.3) 
30.5 ± 0.4 

(0.3) 
187.1 ± 2.8 

(0.7) 
28.1 ± 1.5 

(0.2) 
141.8 ± 5.4 

(0.5) 

Sesquisabinene B (S6) 
526.9 ± 5.1 

(5.4) 
557.5 ± 7.0 

(5.5) 
1545.5 ± 27.0 

(5.9) 
438.0 ± 8.1 

(4.0) 
1096.1 ± 46.9 

(4.1) 

(E)- -Farnesene (S7) 
299.7 ± 22.1 

(3.1) 
330.5 ± 3.2 

(3.2) 
18.4 ± 1.8 

(0.1) 
321.1 ± 5.3 

(2.9) - 

-Curcumene (S8)* 60.3 ± 1.0 
(0.6) 

63.44 ± 1.5 
(0.6) 

184.2 ± 2.7 
(0.7) 

139.0 ± 0.2 
(1.3) 

367.6 ± 16.5 
(1.4) 

Zingiberene (S9)* 60.5 ± 0.7 
(0.6) 

60.4 ± 0.6 
(0.6) 

219.5 ± 4.1 
(0.8) 

66.3 ± 1.7 
(0.6) 

219.9 ± 10.8 
(0.8) 

(S)- -Bisabolene (S10) 
2223.7 ± 19.8 

(22.8) 
2363.6 ± 25.8 

(23.3) 
8746.3 ± 165 

(33.4) 
2352.5 ± 91.4 

(21.6) 
8172.4 ± 463 

(30.9) 

-Curcumene (S11)* 82.6 ± 1.5 
(0.8) 

90.0 ± 2.0 
(0.9) 

224.9 ± 2.8 
(0.8) 

201.9 ± 0.6 
(1.8) 

510.1 ± 25.2 
(1.9) 

(E)- -Bisabolene (S12) 
87.4 ± 0.9 

(0.9) 
91.8 ± 0.9 

(0.9) 
314.8 ± 6.1 

(1.2) 
98.4 ± 3.3 

(0.9) 
312.5 ± 18.9 

(1.2) 
7-epi-Sesquithujene 

hydrate (S13)** 
58.8 ± 0.8 

(0.6) 
60.4 ± 1.4 

(0.6) 
276.3 ± 5.1 

(1.0) 
138.1 ± 2.6 

(1.3) 
575.3 ± 32.8 

(2.2) 
Sesquithujene hydrate 

(S14)** 
1185.0 ± 13.0 

(12.2) 
1218.1 ± 15.9 

(12.0) 
2104.2 ± 304 

(8.0) 
2578.4 ± 45.3 

(23.6) 
5394.2 ± 299 

(20.4) 
(3R)-(E)-Nerolidol 

(S15) 
596.8 ± 3.9 

(6.1) 
592.0 ± 5.1 

(5.8) - 566.5 ± 22.1 
(5.2) - 

Unknown (A)*** 230.9 ± 2.4 
(2.4) 

221.0 ± 2.6 
(2.2) - 206.1 ± 6.0 

(0.2) 
3.0 ± 3.0 

(0) 

Unknown (B)*** 12.5 ± 0.2 
(0.1) 

10.8 ± 0.9 
(0.1) 

69.3 ± 1.0 
(0.3) 

26.4 ± 0.7 
(0.2) 

154.0 ± 7.9 
(0.6) 

Unknown (C)*** 896.8 ± 9.2 
(9.2) 

918.6 ± 9.4 
(9.0) 

1792.2 ± 31.1 
(6.8) 

2104.1 ± 41.2 
(19.3) 

4449.7 ± 225 
(16.8) 

a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes the 
geranyl diphosphate. * Absolute configuration of the stereoisomeric pairs uncertain. ** Hypothetic structure. Compounds 
identified by mass spectra alone. *** Unknown oxygenated cyclic sesquiterpenes.  
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Experimental Section 

[2,2-2H]-Trimethylsilylacetic acid [2]. A mixture of sodium acetate-d3 (1.76 g, 20.7 mmol, Aldrich), 18-crown-6 

ether (2g, 7.6 mmol) in dry ether (100 mL) was refluxed 2h under argon. Trimethylsilyl chloride (2.61 mL, 20.7 

mmol) was added dropwise and the mixture was refluxed for 24h under argon. After cooling, the mixture was 

filtrated under argon. The resulting clear solution was added dropwise to a solution of lithium diisopropylamine at -

78oC [prepared by reaction of n-butyl lithium 1.6 M in hexane (12.94 mL, 20.7 mmol) and diisopropylamine (2.90 

mL, 20.7 mmol) in ether (40 mL)]. The mixture was stirred for 30 min at -78oC, warmed to rt and stirring was 

continued for additional 30 min. The yellow solution was then refluxed for 2h. The reaction was quenched by 

addition of saturated NH4Cl at 0oC. The aqueous phase was acidified to pH = 3 with HCl (0.5 M) and the solution 

was extracted with ether (3  50 mL). The combined organic layers were dried (MgSO4) and concentrated. 

Purification by flash chromatography (1:4 (v/v) ether in petroleum ether) gave 2 (1.16 g, 42 %) as a colorless oil 

which solidifies at low temperature. 1H NMR (400 MHz, CDCl3)  0.17 (s, 9H); 13C NMR (400 MHz, CDCl3)  

(CO2H not observed), -1.13; IR (neat) cm-1:  2925, 2855, 1733, 1461, 1261, 799; ESI-HRMS calcd. for 

C4H7D2O2Si [M-CH3
.]+ 119.0497, found 119.0501. 

General Procedure for the Preparation of Pentadeuterated Ketones. A mixture of 1a,c (39.6 mmol) and 

K2CO3 (0.25 g, previously dried at 80oC for 24h) in D2O (8 mL) was vigorously stirred overnight at 70oC under 

argon. After cooling to rt, the mixture was extracted with dry CH2Cl2 (3  10 mL). The combined organic layers 

were dried (MgSO4) and concentrated. The procedure was repeated 3-5 times with fresh D2O and K2CO3. The 

degree of labeling was monitored by GC-MS (>96 atom % 2H). The pentadeuterated ketone was purified by flash 

chromatography (1:9 (v/v) ether in petroleum ether). 

[1,1,1,3,3-2H5]-6-Methyl-hept-5-en-2-one [1b]. According the general procedure, deuteration of 6-methyl-hept-

5-en-2-one 1a (5g) gave 1b (4.21 g, 81 %) as a yellow pale oil. 1H NMR (400 MHz, CDCl3)  5.0-5.04 (m, 1H), 

2.20 (d, J = 7.09 Hz, 2H), 1.63 (s, 3H), 1.57 (s, 3H); 13C NMR (400 MHz, CDCl3)  209.4, 133.0, 122.9, 25.9, 22.7, 

17.9; IR (neat) cm-1:  2977, 2937, 2554, 1711, 1449, 1380, 1252, 1171, 1042; EI-MS [M+] 131 (4), 113 (85), 95 

(65), 69 (60), 46 (100); ESI-HRMS calcd. for C8H9D5O [M]+. 131.1358 found 131.1360 [21]. 

(5E)-[1,1,1,3,3-2H5]-6,10-Dimethyl-undeca-5,9-dien-2-one [1d]. According the general procedure, deuteration 

of (5E)-6,10-dimethylundeca-5,9-dien-2-one 1c (5g) gave 1d (4.41 g, 86 %) as a yellow pale oil. 1H NMR (400 

MHz, CDCl3)  5.07 (t, J = 7.8 Hz, 2H), 2.25 (d, J = 6.8 Hz, 2H), 1.95-2.08 (m, 4H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 

(s, 3H); IR (neat) cm-1:  2969, 2920, 2857, 1712, 1449, 1378, 1252, 1175, 1061; EI-MS [M+] 199 (3), 181 (4), 156 
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(28), 136 (39), 121 (15), 93 (21), 82 (9), 69 (78), 53 (17), 46 (100); ESI-HRMS calcd. for C8H9D5O [M]+. 199.1984, 

found 199.1985 [22].  

General Procedure for the Preparation of Methyl Esters. Methyl esters were prepared according to the 

modified method of Arigoni et al. [14]. To a solution of lithium diisopropylamine (2.2 eq. mol) in THF (15 mL) at -

78oC was added dropwise a solution of 2 (1.16 g, 8.64 mmol) in THF (15 mL). The mixture was stirred for 30 min at 

-78oC, 30 min at 0oC and then cooled to -78oC before dropwise addition of the corresponding ketones 1a-d (1.1 eq. 

mol) in THF (15 mL). The reaction mixture was then stirred 1h at -78oC, 1h at -10oC and 1h at rt. The reaction 

mixture was quenched by dropwise addition of HCl (0.1 N) at 0oC. THF was removed under reduced pressure and 

the residue was dissolved in hexane (30 mL). The solution was poured into 100 mL of an hexane:HCl (0.5 N) (3:1) 

mixture and the aqueous phase was extracted with hexane (3  40 mL). The combined organic layers were washed 

with brine, dried (MgSO4) and concentrated. Purification by flash chromatography (1:4 (v/v) ether in petroleum 

ether) gave an isomeric mixture of corresponding carboxylic acids. The mixture of E/Z carboxylic acids was 

dissolved in ACN (20 mL) at 0oC and freshly distilled diisopropylamine (1.1 eq. mol) was added dropwise. The 

mixture was stirred 10 at 0oC, 20 min at rt and then cooled to 0oC before dropwise addition of freshly distilled 

dimethyl sulfate (2 eq. mol). The reaction mixture was stirred for 3h at rt. The mixture was quenched by dropwise 

addition of NH4OH (0.1N) and the solvent was removed under reduced pressure. The residue was taken up in Et2O 

(10 mL), poured into an ether:water (3:1) mixture (80 mL) and the aqueous phase was extracted with ether (3  30 

mL). The combined organic layers were washed with brine, dried (MgSO4) and concentrated. Silica gel column 

chromatography (1:9 (v/v) ether in petroleum ether) gave isomerically pure methyl esters.  

Methyl (2E)-[2-2H1]-3,7-Dimethylocta-2,6-dienoate [3a] and Methyl (2Z)-[2-2H1]-3,7-Dimethylocta-2,6-

dienoate [4a]. According the general procedure, condensation of 1a (1.14 g) and 2 (1.10 g), esterification of the 

mixture of E/Z carboxylic acids and subsequent purification by flash chromatography gave 4a (0.20 g) as a colorless 

oil followed by 3a (0.31 g) as a colorless oil (total yield 35 % from 2, Z/E 4:6). IR (neat, mixture of E- and Z- 

isomers) cm-1:  2962, 1261, 1094, 1021, 866, 800. 

Data for 4a: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 3.68 (s, 3H), 2.64 (t, J = 8.25 Hz, 2H), 1.69 (q, J = 

7.52 Hz, 2H), 1.90 (s, 3H); 1.69 (s br, 3H), 1.63 (s br, 3H); 13C NMR (400 MHz, CDCl3)  167.1, 160.8, 132.6, 

124.5, 51.1, 33.8, 27.2, 26.0, 25.6, 18.0; EI-MS [M]+ 183 (6), 152 (16), 124 (35), 115 (55), 84 (36), 69 (100), 41 

(37); ESI-HRMS calcd. for C11H17DO2 [M]+ 183.1369, found 183.1360.  

Data for 3a: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 1H), 3.69 (s, 3H), 2.17 (s, 7H), 1.69 (s, 3H), 1.61 (s, 

3H); 13C NMR (400 MHz, CDCl3)  167.6, 160.4, 132.9, 123.4, 51.1, 41.2, 26.4, 26.0, 19.2, 18.1; EI-MS [M]+ 183 
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(15), 152 (19), 124 (47), 115 (87), 84 (59), 69 (100), 41 (57); ESI-HRMS calcd. for C11H17DO2 [M]+ 183.1369, 

found 183.1362.  

Methyl (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate [3b] and Methyl (2Z)-[2,4,4,9,9,9-2H6]-3,7-

Dimethylocta-2,6-dienoate [4b]. According the general procedure, condensation of 1b (1.25 g) and 2 (1.16 g), 

esterification of the mixture of E/Z carboxylic acids and subsequent purification by flash chromatography gave 4b 

(0.24 g) as a colorless oil followed by 3b (0.37 g) as a colorless oil (total yield 38 % from 2, Z/E 4:6). IR (neat, 

mixture of E- and Z- isomers) cm-1:  2964, 2918, 1719, 1629, 1435, 1230, 1102, 1041, 792. 

Data for 4b: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 3.68 (s, 3H), 2.15 (d, J = 7.30 Hz, 2H), 1.69 (s, 

3H), 1.63 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.1, 160.5, 132.5, 124.1, 51.1, 27.0, 26.0, 18.0; EI-MS [M]+ 188 

(10), 156 (16), 128 (38), 119 (41), 88 (36), 69 (100), 41 (47); ESI-HRMS calcd. for C11H12D6O2 [M]+ 188.1683, 

found 188.1691.  

Data for 3b: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 1H), 3.69 (s, 3H), 2.15 (d, J = 6.83 Hz, 2H), 1.69 (s, 

3H), 1.61 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.6, 160.2, 132.9, 123.4, 51.1, 26.3, 26.0, 18.0; EI-MS [M]+ 188 

(7), 156 (13), 128 (27), 119 (50), 88 (26), 69 (100), 41 (38); ESI-HRMS calcd. for C11H12D6O2 [M]+ 183.1683, 

found 188.1692.  

Methyl (2E,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trienoate [3c] and Methyl (2Z,6E)-[2-2H1]-3,7,11-

Trimethyldodeca-2,6,10-trienoate [4c]. According the general procedure, condensation of 1c (1.62 g) and 2 (1.02 

g), esterification of the mixture of E/Z carboxylic acids and subsequent purification by flash chromatography gave 

4c (0.25 g) as a colorless oil followed by 3c (0.41 g) as a colorless oil (total yield 35 % from 2, Z/E 4:6). IR (neat, 

mixture of E- and Z- isomers) cm-1:  2968, 2917, 1719, 1638, 1438, 1378, 1241, 1148, 1069, 928, 792. 

Data for 4c: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 5.06-5.10 (m, 1H), 3.66 (s, 3H), 2.65 (t, J = 7.79 

Hz, 2H), 2.17 (q, J = 7.64 Hz, 2H), 2.03-2.08 (m, 2H), 1.95-1.99 (m, 2H), 1.88 (s, 3H), 1.67 (s, 3H), 1.61 (s, 3H), 

1.59 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.0, 160.6, 136.1, 131.5, 124.7, 123.9, 50.9, 40.0, 33.7, 27.1, 27.0, 

26.0, 25.5, 17.9, 16.2; EI-MS [M]+ 251 (8), 208 (21), 136 (32), 115 (55), 81 (51), 69 (100), 41 (52); ESI-HRMS 

calcd. for C16H25DO2 [M]+ 251.1995, found 251.1999. 

Data for 3c: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 2H), 3.69 (s, 3H), 2.17 (s br, 7H), 1.97-2.10 (m, 4H), 

1.69 (s, 3H), 1.61 (s br, 6H); 13C NMR (400 MHz, CDCl3)  167.6, 160.3, 136.6, 131.7, 124.6, 123.3, 51.0, 41.3, 

40.0, 27.1, 26.4, 26.0, 19.2, 18.0, 16.3; EI-MS [M]+ 251 (25), 208 (56), 150 (57), 115 (60), 81 (57), 69 (100), 41 

(67); ESI-HRMS calcd. for C16H25DO2 [M]+ 251.1995, found 251.2000. 
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Methyl (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate [3d] and Methyl (2Z,6E)-

[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate [4d]. According the general procedure, 

condensation of 1d (1.78 g) and 2 (1.09 g), esterification of the mixture of E/Z carboxylic acids and subsequent 

purification by flash chromatography gave 4d (0.24 g) as a colorless oil followed by 3d (0.41 g) as a colorless oil 

(total yield 31 % from 2, Z/E 4:6). IR (neat, mixture of E- and Z- isomers) cm-1:  2967, 2919, 1719, 1629, 1435, 

1379, 1226, 1114, 1052. 

Data for 4d: 1H NMR (400 MHz, CDCl3)  5.15-5.19 (m, 1H), 5.07-5.11 (m, 1H), 3.67 (s, 3H), 2.16 (d, J = 7.15 

Hz, 2H), 2.03-2.08 (m, 2H), 1.96-1.99 (m, 2H), 1.68 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H); 13C NMR (400 MHz, 

CDCl3)  167.1, 160.7, 136.1, 131.6, 124.7, 123.8, 51.1, 40.0, 27.1, 26.8, 26.0, 18.0, 16.3; EI-MS [M]+ 256 (3), 213 

(5), 119 (30), 81 (24), 69 (100), 41 (34); ESI-HRMS calcd. for C16H20D6O2 [M]+ 256.2309, found 256.2304.  

Data for 3d: 1H NMR (400 MHz, CDCl3)  (5.07-5.10, m, 2H), 3.69 (s, 3H), 2.16 (d, J = 6.61 Hz, 2H), 1.96-2.09 

(m, 4H), 1.68 (s, 3H), 1.60 (s, 6H); 13C NMR (400 MHz, CDCl3)  167.6, 160.3, 136.5, 131.8, 124.6, 123.2, 51.1, 

40.0, 27.0, 26.2, 26.0, 18.0, 16.4; EI-MS [M]+ 256 (7), 213 (15), 155 (9), 119 (29), 81 (33), 69 (100), 41 (46); ESI-

HRMS calcd. for C16H20D6O2 [M]+ 256.2309, found 256.2302. 

General Procedure for the Preparation of Geraniols and Farnesols. Geraniols and farnesols were prepared 

according to the modified method of Arigoni et al. [14]. To a solution of methyl ester 3,4a-d (0.87 mmol) in CH2Cl2 

(20 mL) at -78oC under argon was added dropwise diisobutylaluminium hydride (1M in hexane, 2 eq. mol). Stirring 

was continued at -78oC for 5h before addition of water (0.4 mL), NaOH (1N, 0.4 mL) and water (1.2 mL). The 

mixture is loaded to a column filled with Na2SO4 and eluted with MeOH (2 volumes column). The solution is 

concentrated and purified by flash chromatography (1:4 (v/v) ether in petroleum ether) to give the corresponding 

alcohol 5,6a-d. 

(2E)-[2-2H1]-3,7-Dimethylocta-2,6-dien-1-ol [5a]. According the general procedure, reduction of 3a (0.172 g) 

gave 5a (0.127 g, 87 %) as a colorless oil. 1H NMR (400 MHz, CDCl3)  5.08-5.13 (m, 1H), 4.16 (s, 2H), 2.02-2.13 

(m, 4H), 1.69 (s br, 6H), 1.61 (s, 3H); 13C NMR (400 MHz, CDCl3)  140.1, 132.1, 124.3, 59.7, 39.9, 26.8, 26.0, 

18.1, 16.6; ESI-HRMS calcd. for C10H15D [M-H2O]+. 137.1314, found 137.1307. 

 (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dien-1-ol [5b]. According the general procedure, reduction of 3b 

(0.185 g) gave 5b (0.141 g, 90 %) as a colorless oil. 1H NMR (400 MHz, CDCl3)  5.05-5.09, m, 1H), 4.10 (s, 2H), 

2.05 (d, J = 6.79 Hz, 2H), 1.65 (s, 3H), 1.57 (s, 6H); 13C NMR (400 MHz, CDCl3)  139.4, 131.9, 124.2, 59.4, 26.5, 

25.9, 17.9.  
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 (2E,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol [5c]. According the general procedure, reduction of 

3c (0.180 g) gave 5c (0.153 g, 96 %) as a colorless oil. 1H NMR (400 MHz, CDCl3)  5.04-5.10 (m, 2H), 4.08 (s, 

2H), 1.92-2.10 (m, 8H), 1.64 (s, 3H), 1.63 (s, 3H), 1.56 (s br, 6H); 13C NMR (400 MHz, CDCl3)  139.2, 135.4, 

131.4, 124.5, 124.1, 59.2, 39.9, 39.7, 26.9, 26.5, 25.8, 17.8, 16.4, 16.  

(2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol [5d]. According the general procedure, 

reduction of 3d (0.179 g) gave 5d (0.140 g, 88 %) as a colorless oil. 1H NMR (400 MHz, CDCl3)  5.10-5.12 (m, 

2H), 4.15 (s, 2H), 1.98-2.11 (m, 6H), 1.69 (s, 3H), 1.61 (s, 6H); 13C NMR (400 MHz, CDCl3)  140.0, 135.7, 131.7, 

124.7, 124.1, 59.7, 40.1, 27.1, 26.5, 26.0, 18.0, 16.4.  

General Procedure for the Preparation of Trisammonium Diphosphates. Trisammonium diphosphates were 

prepared according to the modified method of Woodside et al. [15]. To a solution of N-chlorosuccinimide (11.39 

mmol) in CH2Cl2 (45 mL) at -30oC under argon was added dropwise freshly distilled dimethyl sulfide (1.1 eq. mol). 

The mixture was warmed to 0oC, stirred at this temperature for 10 min and cooled to -40oC. A solution of alcohol 

5,6a-d (1 eq. mol) in CH2Cl2 (5 mL) was slowly added before the reaction mixture was warmed to 0oC. Stirring was 

continued for 2h at 0oC and 15 min at rt. The clear solution was then washed with cold saturated NaCl (25 mL). The 

aqueous phase was extracted with pentane (2  20 mL). The combined organic layers were washed with cold 

saturated NaCl (20 mL), dried (MgSO4), concentrated under reduced pressure (no water bath) and completely 

removed under high vacuum for 2h. Corresponding alkyl chlorides were used without further purification. Freshly 

prepared tris(tetrabutylammonium) hydrogen pyrophosphate (according the method of Woodside et al. [16]) (1.2 eq. 

mol) was dissolved in ACN (5 mL) at rt under argon before dropwise addition of alkyl chloride in ACN (2 mL). 

Stirring was continued at rt overnight. The mixture was concentrated under reduced pressure. The residue was 

dissolved in (NH4)2CO3 (3 mL) (0.25 mM, 2 % isopropyl alcohol), loaded onto a 2  30 cm column of Dowex 

50WX8-200 (NH4
+ form) before elution of two volumes column of (NH4)2CO3 (0.25 mM, 2 % isopropyl alcohol). 

The eluent was lyophilized and the resulting white powder was purified by chromatography on cellulose (1:9 (v/v) 

water in ACN). Fractions were monitored by TLC (silica gel, iPr-OH-water-AcOEt 6:3:1) and those containing 

trisammonium diphosphate were combined. Solvents were removed under reduced pressure and the resulting 

solution was lyophilized to afford 7,8a-d. 

Trisammonium (2E)-[2-2H1]-3,7-Dimethylocta-2,6-dienyl Diphosphate [7a]. According the general procedure, 

phosphorylation of 5a (0.127 g) gave 7a (0.153 g, 51 % from 5a) as a flocculent white solid. mp: 157-160oC. 1H 

NMR (400 MHz, D2O/ND4OD)  5.37-5.41 (m, 1H), 4.65 (d, J = 6.05 Hz, 2H), 2.25-2.37 (m, 4H), 1.90 (s, 3H), 

1.87 (s, 3H), 1.81 (s, 3H); 13C NMR (400 MHz, D2O/ND4OD)  145.1, 136.4, 127.0, 65.2 (d, J = 5.13 Hz), 41.6, 
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28.5, 27.7, 19.8, 18.4; 31P NMR (400 MHz, D2O/ND4OD)  - 5.60 (d, J = 21.73 Hz, 1 P), - 9.64 (d, J31P,31P = 21.73 

Hz, 1 P); IR (ZnS, microscope) cm-1:  3199, 3033-2922 (br), 2391, 1658, 1445, 1204, 1091, 923; ESI-HRMS calcd. 

for C10H18DO7P2 [M-H]- 314.0669, found 314.0667. 

Trisammonium (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienyl Diphosphate [7b]. According the general 

procedure, phosphorylation of 5b (0.141 g) gave 7b (0.131 g, 40 % from 5b) as a flocculent white solid. mp: 155-

160oC. 1H NMR (400 MHz, D2O/ND4OD)  5.36-5.39 (m, 1H), 4.63 (s br, 2H), 2.30 (d, J = 6.97 Hz, 2H), 1.86 (s, 

3H), 1.70 (s, 3H); 13C NMR (400 MHz, D2O/ND4OD)  144.9, 136.3, 127.1, 65.2 (d, J = 5.20 Hz), 28.4, 27.8, 19.9; 

31P NMR (400 MHz, D2O/ND4OD)  - 5.58 (d, J = 21.70 Hz, 1 P), - 9.58 (d, J31P,31P = 21.63 Hz, 1 P); IR (ZnS, 

microscope) cm-1:  3150-2920 (br), 2320, 2197, 1649, 1447, 1207, 1092, 920; ESI-HRMS calcd. for C10H13D6O7P2 

[M-H]- 319.0983, found 319.1002. 

Trisammonium (2E,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate [7c]. According the 

general procedure, phosphorylation of 5c (0.153 g) gave 7c (0.134 g, 45 % from 5c) as a flocculent white solid. mp: 

185-188oC. 1H NMR (400 MHz, D2O/ND4OD)  5.41-5.47 (m, 2H), 4.72 (d, J = 6.05 Hz, 2H), 1.98-2.42 (m, 8H), 

1.94 (s, 3H), 1.88 (s, 3H), 1.87 (s, 6H); 13C NMR (400 MHz, D2O/ND4OD)  145.1, 139.3, 136.1, 127.3, 127.1, 65.1 

(d, J = 4.59 Hz), 41.71, 41.69, 28.7, 28.6, 27.8, 19.8, 18.5, 18.1; 31P NMR (400 MHz, D2O/ND4OD)  -5.60 (d, J = 

15.93 Hz, 1 P), -9.72 (d, J31P,31P = 23.7 Hz, 1 P); IR (ZnS, microscope) cm-1:  3165-2860 (br), 2357, 1659, 1445, 

1207, 1093, 920; ESI-HRMS calcd. for C15H26DO7P2 [M-H]- 382.1295, found 382.1270. 

Trisammonium (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate [7d]. 

According the general procedure, phosphorylation of 5d (0.140 g) gave 7d (0.178 g, 66 % from 5d) as a flocculent 

white solid. mp: 188-190oC. 1H NMR (400 MHz, D2O/ND4OD)  5.36-5.39 (m, 2H), 4.66 (d, J = 5.75 Hz, 2H), 

2.28-2.35 (m, 4H), 2.20-2.24 (m, 2H), 1.88 (s, 3H), 1.82 (s, 6H); 13C NMR (400 MHz, D2O/ND4OD)  145.1, 139.4, 

136.2, 127.3, 127.1, 65.1 (d, J = 5.35 Hz), 41.7, 28.7, 28.4, 27.7, 19.8, 18.1; 31P NMR (400 MHz, D2O/ND4OD)  -

5.63 (d, J = 15.81 Hz, 1 P), -9.65 (d, J31P,31P = 17.78 Hz, 1 P); IR (ZnS, microscope) cm-1:  3152-2859 (br), 2354, 

2198, 1650, 1445, 1207, 1092, 921; ESI-HRMS calcd. for C15H21D6O7P2 [M-H]- 387.1609, found 387.1597. 

Trisammonium (E)-Geranyl and (2E,6E)-Farnesyl Diphosphates. Unlabeled GDP and FDP were synthesized 

from commercial geranyl and farnesyl chloride (Aldrich) respectively, according the phosphorylation procedure 

described above. 
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Product distribution of main monoterpenes from incubations of deuterated GDP with 
TPS4-B73 and TPS5-Delprim from maize (Zea mays) 

enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-GDPc E-(1D)-GDP 
7a

Z-(1D)-GDP 
8a

E-(6D)-GDP 
7b 

Z-(6D)-GDP 
8b

TPS4 

-Thujene (M1)* 
 

15.4 ± 0.5 
(3.3) 

15.6 ± 0.2 
(3.1) 

20.8 ± 0.8 
(3.3) 

5.0 ± 0.0 
(1.2) 

5.7 ± 0.1 
(1.0) 

Sabinene (M2)* 
 

39.7 ± 1.2 
(8.4) 

41.8 ± 0.3 
(8.4) 

63.1 ± 0.6 
(9.9) 

18.0 ± 0.9 
(4.2) 

31.4 ± 0.8 
(5.3) 

-Myrcene (M3) 
 

42.6 ± 2.0 
(9.1) 

42.9 ± 0.5 
(8.6) - 26.9 ± 0.6 

(6.4) - 

(S)-(-)-Limonene (M4) 
 

101.1 ± 3.5 
(21.5) 

100.9 ± 1.6 
(20.3) 

245.9 ± 3.4 
(38.6) 

95.2 ± 2.1 
(22.5) 

236.3 ± 4.3 
(39.6) 

Sabinene hydrate (M5)** 
 

26.7 ± 1.2 
(5.7) 

31.2 ± 1.0 
(6.3) 

38.8 ± 1.3 
(6.1) 

39.6 ± 0.7 
(9.3) 

62.6 ± 1.2 
(10.5) 

-Terpinolene (M6) 
 

21.4 ± 0.4 
(4.5) 

22.4 ± 0.2 
(4.5) 

91.9 ± 1.4 
(14.4) 

21.7 ± 0.5 
(5.1) 

89.9 ± 2.3 
(15.1) 

Linalool (M7)* 
 

112.1 ± 4.2 
(23.9) 

128.5 ± 3.6 
(25.9) 

17.8 ± 1.0 
(2.8) 

115.8 ± 2.1 
(27.3) 

27.9 ± 0.6 
(4.7) 

-Terpineol (M8)* 
 

30.6 ± 1.7 
(6.5) 

34.9 ± 0.8 
(7.0) 

78.6 ± 3.8 
(12.3) 

29.7 ± 0.3 
(7.0) 

76.2 ± 1.2 
(12.8) 

Geraniol (M9) 
79.7 ± 3.3 

(17.0) 
78.7 ± 2.7 

(15.8) 
80.7 ± 3.0 

(12.6) 
71.3 ± 1.8 

(16.8) 
66.0 ± 0.9 

(11.1) 
a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes 

the geranyl diphosphate. * Stereoisomeric pairs chromatographically not resolved. ** Compound identified by mass 
spectra alone. 

 

Enzyme 
product distributiona, b 

ng/h  
(% composition) 

substrate 

E-GDPc E-(1D)-GDP 
7a

Z-(1D)-GDP 
8a

E-(6D)-GDP 
7b 

Z-(6D)-GDP 
8b

TPS5 

-Thujene (M1)* 
 

67.0 ± 4.5 
(2.5) 

66.3 ± 2.4 
(2.4) 

166.9 ± 3.1 
(5.0) 

18.4 ± 1.1 
(0.8) 

46.4 ± 1.1 
(1.5) 

Sabinene (M2)* 
 

303.9 ± 4.4 
(11.2) 

294.8 ± 3.5 
(10.7) 

644.1 ± 8.3 
(19.2) 

127.9 ± 1.5 
(5.4) 

316.7 ± 12.4 
(10.2) 

-Myrcene (M3) 
 

534.1 ± 14.6 
(19.6) 

498.0 ± 11.1 
(18.0) 

11.9 ± 1.6 
(0.3) 

348.1 ± 2.6 
(14.8) 

10.2 ± 2.9 
(0.3) 

(S)-(-)-Limonene (M4) 
 

570.0 ± 10.2 
(20.9) 

546.5 ± 6.3 
(19.8) 

1404.0 ± 12.1 
(42.0) 

500.4 ± 9.9 
(21.3) 

1383.4 ± 33.2 
(44.6) 

Sabinene hydrate (M5)** 
 

198.3 ± 13.2 
(7.3) 

212.6 ± 2.3 
(7.7) 

452.0 ± 4.7 
(13.5) 

304.0 ± 10.2 
(12.9) 

648.9 ± 48.0 
(20.9) 

-Terpinolene (M6) 
 

92.6 ± 2.8 
(3.4) 

89.0 ± 0.2 
(3.2) 

194.0 ± 4.7 
(5.8) 

86.7 ± 2.0 
(3.7) 

208.8 ± 8.0 
(6.7) 

Linalool (M7)* 
 

317.0 ± 23.2 
(11.6) 

339.4 ± 4.7 
(12.3) 

137.6 ± 18.5 
(4.1) 

332.2 ± 17.3 
(14.1) 

189.9 ± 15.4 
(6.1) 

-Terpineol (M8)* 
 

140.8 ± 11.5 
(5.2) 

157.9 ± 4.6 
(5.7) 

322.1 ± 34.73 
(9.6) 

135.3 ± 7.0 
(5.8) 

286.1 ± 20.2 
(9.2) 

Geraniol (M9) 
500.0 ± 47.3 

(18.4) 
559.2 ± 3.5 

(20.2) 
12.9 ± 4.1 

(0.4) 
495.8 ± 34.8 

(21.1) 
11.2 ± 0.4 

(0.3) 
a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes the 
geranyl diphosphate. * Stereoisomeric pairs chromatographically not resolved. ** Compound identified by mass spectra 
alone. 

 



S-6 
 

 

Product distribution of main sesquiterpenes from incubations of deuterated FDP with 

TPS4-B73 from maize (Zea mays) 

enzym
e 

product distributiona, b 
ng/h  

(% composition) 

substrate 

E-FDPc E,E-(1D)-
FDP 7c 

Z,E-(1D)-FDP 
8c

E,E-(6D)-
FDP 7d 

Z,E-(6D)-FDP 
8d

TPS4 

7-epi-Sesquithujene 
(S1) 

568.8 ± 25.4 
(18.5) 

713.2 ± 75.9 
(20.0) 

2395.1 ± 55.3 
(29.3) 

349.4 ± 19.4 
(12.1) 

1552.2 ± 30.6 
(16.8) 

Sesquithujene (S2) 
133.3 ± 6.0 

(4.3) 
165.4 ± 17.3 

(4.6) 
635.7 ± 14.5 

(7.8) 
55.9 ± 3.0 

(1.9) 
278.4 ± 5.0 

(3.0) 
(Z)- -Bergamotene 

(S3) 
30.5 ± 1.5 

(1.0) 
40.2 ± 4.0 

(1.1) 
66.3 ± 1.4 

(0.8) 
21.3 ± 1.1 

(0.7) 
42.2 ± 0.7 

(0.4) 
(E)- -Bergamotene 

(S4) 
47.8 ± 2.0 

(1.5) 
65.4 ± 7.1 

(1.8) 
203.8 ± 4.7 

(2.5) 
16.7 ± 0.8 

(0.6) 
80.8 ± 1.6 

(0.9) 

Sesquisabinene A (S5) 
72.9 ± 2.9 

(2.4) 
91.0 ± 8.0 

(2.5) 
328.3 ± 6.9 

(4.0) 
57.5 ± 3.0 

(2.0) 
246.7 ± 4.0 

(2.7) 

Sesquisabinene B (S6) 
29.9 ± 1.2 

(1.0) 
36.5 ± 2.9 

(1.0) 
175.7 ± 3.7 

(2.1) 
26.3 ± 1.3 

(0.9) 
144.2 ± 2.3 

(1.6) 

(E)- -Farnesene (S7) 
88.2 ± 3.4 

(2.9) 
112.5 ± 11.2 

(3.1) - 82.8 ± 4.2 
(2.9) - 

-Curcumene (S8)* 9.4 ± 0.3 
(0.3) 

11.0 ± 1.0 
(0.3) 

68.3 ± 3.4 
(0.8) 

25.2 ± 1.5 
(0.9) 

134.6 ± 2.0 
(1.4) 

Zingiberene (S9)* 27.6 ± 2.0 
(0.9) 

34.3 ± 4.5 
(1.0) 

122.6 ± 2.7 
(1.5) 

25.4 ± 1.3 
(0.9) 

105.3 ± 2.3 
(1.1) 

(S)- -Bisabolene (S10) 
584.4 ± 23.0 

(19.1) 
737.3 ± 74.2 

(20.7) 
1983.6 ± 42.8 

(24.3) 
573.1 ± 31.2 

(19.9) 
2053.2 ± 41.1 

(22.2) 

-Curcumene (S11)* 19.7 ± 0.6 
(0.6) 

23.0 ± 1.9 
(0.6) 

98.5 ± 5.0 
(1.2) 

68.5 ± 3.6 
 (2.4) 

299.9 ± 4.9 
(3.2) 

(E)- -Bisabolene (S12) 
45.0 ± 1.6 

(1.5) 
56.1 ± 5.5 

(1.6) 
152.1 ± 3.3 

(1.9) 
44.2 ± 2.4 

(1.5) 
159.9 ± 3.1 

(1.7) 
7-epi-Sesquithujene 

hydrate (S13)** 
174.0 ± 4.8 

(5.7) 
182.3 ± 0.9 

(5.1) 
809.6 ± 28.3 

(9.9) 
363.5 ± 20.9 

(12.6) 
1873.0 ± 22.9 

(20.3) 
Sesquithujene hydrate 

(S14)** 
116.7 ± 3.6 

(3.8) 
116.1 ± 0.7 

(3.2) 
505.9 ± 19.1 

(6.2) 
200.8 ± 11.8 

(7.0) 
1093.8 ± 25.3 

(11.8) 
(3R)-(E)-Nerolidol 

(S15) 
458.3 ± 13.8 

(14.9) 
481.4 ± 10.6 

(13.5) - 344.1 ± 21.1 
(11.9) - 

Unknown (A)*** 525.6± 14.7 
(17.1) 

550.2 ± 2.8 
(15.4) 

7.1 ± 1.4 
(0.1) 

411.3 ± 23.6 
 (14.3) 

8.12 ± 0.7 
(0.1) 

Unknown (B)*** 29.8 ± 0.9 
(1.0) 

30.9 ± 0.1 
(0.9) 

148.9 ± 6.7 
(1.8) 

69.8 ± 4.1 
(2.4) 

393.3 ± 6.9 
(4.2) 

Unknown (C)*** 51.7 ± 2.4 
(1.7) 

51.6 ± 0.7 
(1.4) 

229.2 ± 10.2 
(2.8) 

80.8 ± 4.7 
(2.0) 

487.4 ± 8.5 
(5.3) 

a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes 
the geranyl diphosphate. * Absolute configuration of the stereoisomeric pairs uncertain. ** Hypothetic structure. 
Compounds identified by mass spectra alone. *** Unknown oxygenated cyclic sesquiterpenes. 
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Product distribution of main sesquiterpenes from incubations of deuterated FDP with 

TPS5-Delprim from maize (Zea mays) 

enzym
e 

product distributiona, b 
ng/h  

(% composition) 

substrate 

E-FDPc E,E-(1D)-
FDP 7c 

Z,E-(1D)-FDP 
8c

E,E-(6D)-
FDP 7d 

Z,E-(6D)-FDP 
8d

TPS5 

7-epi-Sesquithujene 
(S1) 

196.6 ± 2.0 
(2.0) 

200.4 ± 2.1 
(2.0) 

1035.7 ± 14.6 
(3.9) 

132.0 ± 5.1 
(1.2) 

633.0 ± 13.7 
(2.4) 

Sesquithujene (S2) 
2854.3 ± 28.8 

(29.3) 
2967.0 ± 35.2 

(29.2) 
8442 ± 129.9 

(32.3) 
1265.8 ± 32.8 

(11.6) 
3497.7 ± 95.7 

(13.2) 
(Z)- -Bergamotene 

(S3) 
245.4 ± 2.4 

(2.5) 
268.4 ± 2.7 

(2.6) 
484.0 ± 7.1 

(1.8) 
134.8 ± 2.8 

(1.2) 
209.8 ± 5.2 

(0.8) 
(E)- -Bergamotene 

(S4) 
33.5 ± 0.4 

(0.3) 
36.1 ± 0.5 

(0.3) 
360.7 ± 5.9 

(1.4) 
23.6 ± 2.0 

(0.2) 
274.4 ± 9.0 

(1.0) 

Sesquisabinene A (S5) 
31.8 ± 0.4 

(0.3) 
30.5 ± 0.4 

(0.3) 
187.1 ± 2.8 

(0.7) 
28.1 ± 1.5 

(0.2) 
141.8 ± 5.4 

(0.5) 

Sesquisabinene B (S6) 
526.9 ± 5.1 

(5.4) 
557.5 ± 7.0 

(5.5) 
1545.5 ± 27.0 

(5.9) 
438.0 ± 8.1 

(4.0) 
1096.1 ± 46.9 

(4.1) 

(E)- -Farnesene (S7) 
299.7 ± 22.1 

(3.1) 
330.5 ± 3.2 

(3.2) 
18.4 ± 1.8 

(0.1) 
321.1 ± 5.3 

(2.9) - 

-Curcumene (S8)* 60.3 ± 1.0 
(0.6) 

63.44 ± 1.5 
(0.6) 

184.2 ± 2.7 
(0.7) 

139.0 ± 0.2 
(1.3) 

367.6 ± 16.5 
(1.4) 

Zingiberene (S9)* 60.5 ± 0.7 
(0.6) 

60.4 ± 0.6 
(0.6) 

219.5 ± 4.1 
(0.8) 

66.3 ± 1.7 
(0.6) 

219.9 ± 10.8 
(0.8) 

(S)- -Bisabolene (S10) 
2223.7 ± 19.8 

(22.8) 
2363.6 ± 25.8 

(23.3) 
8746.3 ± 165 

(33.4) 
2352.5 ± 91.4 

(21.6) 
8172.4 ± 463 

(30.9) 

-Curcumene (S11)* 82.6 ± 1.5 
(0.8) 

90.0 ± 2.0 
(0.9) 

224.9 ± 2.8 
(0.8) 

201.9 ± 0.6 
(1.8) 

510.1 ± 25.2 
(1.9) 

(E)- -Bisabolene (S12) 
87.4 ± 0.9 

(0.9) 
91.8 ± 0.9 

(0.9) 
314.8 ± 6.1 

(1.2) 
98.4 ± 3.3 

(0.9) 
312.5 ± 18.9 

(1.2) 
7-epi-Sesquithujene 

hydrate (S13)** 
58.8 ± 0.8 

(0.6) 
60.4 ± 1.4 

(0.6) 
276.3 ± 5.1 

(1.0) 
138.1 ± 2.6 

(1.3) 
575.3 ± 32.8 

(2.2) 
Sesquithujene hydrate 

(S14)** 
1185.0 ± 13.0 

(12.2) 
1218.1 ± 15.9 

(12.0) 
2104.2 ± 304 

(8.0) 
2578.4 ± 45.3 

(23.6) 
5394.2 ± 299 

(20.4) 
(3R)-(E)-Nerolidol 

(S15) 
596.8 ± 3.9 

(6.1) 
592.0 ± 5.1 

(5.8) - 566.5 ± 22.1 
(5.2) - 

Unknown (A)*** 230.9 ± 2.4 
(2.4) 

221.0 ± 2.6 
(2.2) - 206.1 ± 6.0 

(0.2) 
3.0 ± 3.0 

(0) 

Unknown (B)*** 12.5 ± 0.2 
(0.1) 

10.8 ± 0.9 
(0.1) 

69.3 ± 1.0 
(0.3) 

26.4 ± 0.7 
(0.2) 

154.0 ± 7.9 
(0.6) 

Unknown (C)*** 896.8 ± 9.2 
(9.2) 

918.6 ± 9.4 
(9.0) 

1792.2 ± 31.1 
(6.8) 

2104.1 ± 41.2 
(19.3) 

4449.7 ± 225 
(16.8) 

a Product distribution was determined by GC-FID analysis. b Average of three independent replicates. c GDP denotes 
the geranyl diphosphate. * Absolute configuration of the stereoisomeric pairs uncertain. ** Hypothetic structure. 
Compounds identified by mass spectra alone. *** Unknown oxygenated cyclic sesquiterpenes.  
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Oxygenated cyclic volatiles approximation 

To estimate the weight of this approximation, quantitative kinetic measurements were carried 

out. Since TPS4-B73 and TPS5-Delprim exhibit similar basic features, only deuterium 

isotope effects on the catalytic activity of TPS4 were evaluated using the noncompetitive 

method. Both unlabeled (2E,6E)-FDP and (2E,6E)-[2H6]-FDP 7d substrates were used in two 

independent enzyme assays. Standard enzyme assays were performed in triplicate with 

aliquots of the same enzyme extracts under saturated substrate conditions. A decrease of 13 

% (relative to the reference substrate) of the maximal rate for sesquiterpene formation was 

observed when (2E,6E)-[2H6]-FDP 7d was incubated with TPS4, while similar Km were 

obtained for both substrates. Since the kinetic experiments were performed using the same 

enzyme extract, the total enzyme concentration [ET] was identical for both assays. Therefore, 

the turnover number (kcat) of the enzyme, usually defined as the ratio of Vmax/[ET], can be 

approximated to Vmax. The apparent total rate isotope effect kH/kD, determined from the 

maximal rates, equals 1.15. As discussed before, similar results were obtained when the 

oxygenated cyclic volatiles were not considered (19 % decrease in the volatile production 

corresponding to a kH/kD = 1.23) and justify the approximation made above. 
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Experimental Section 

General Methods. Reactions were performed under Ar. Solvents were dried according to 

standard procedures. 1H, 13C and 31P NMR: Bruker AV 400 spectrometer (Bruker, D-76287 

Rheinstetten/Karlsruhe, Germany). Chemical shifts of 1H, 13C and 31P NMR are given in ppm 

( ) based on solvent picks. CDCl3: 7.27 (1H NMR) and 77.4 ppm (13C NMR). D2O/ND4OD: 

4.79 (1H NMR); 13C NMR and 31P NMR were referenced to external standard 3-

(trimethylsilyl)-propionic acid-d4 sodium salt (TSP; 3 % in D2O) and phosphoric acid 

(H3PO4, 10 % in D2O), respectively. IR: Bruker Equinox 55 FTIR spectrophotometer. GC-

MS: Trace MS, 2000 Series (Thermoquest, D-63329 Egelsbach, Germany) equipped with an 

Alltech DB5 (15 m  0.25 mm, 0.25 m); helium served as carrier gas. Molecular 

composition of prepared compounds were determined by ESI-MS using a Micromass Quattro 

II (Waters, Micromass, Manchester, UK) tandem quadrupole mass spectrometer (geometry 

quadrupole-hexapole-quadrupole) equipped with an electrospray (ESI) source. High 

resolution ESI-MS (HR-EI-MS) were recorded at resolution ca 2500. High-resolution MS 

(EI) data were obtained using a MasSpec 2 instrument (Micromass, UK) in positive ion mode 

using 70 eV ionization energy. GC-HR-MS: Analyses were performed with a Hewlett 

Packard HP6890 gas chromatograph interfaced to a MasSpec 2. Separation was achieved on a 

J & W Scientific DB-5 capillary column, 30 m × 0.25 mm, 0.25 μm film thickness using 

helium (30 mL s-1) as carrier gas. Melting point: Büchi B-540 (Büchi Labortechnik AG, CH-

9230 Flawil, Switzerland). Chromatography: Silica gel Si 60 (0.200-0.063 mm, E. Merck, 

Darmstadt, Germany); cellulose microcrystalline Avicel (E. Merck, Darmstadt, Germany). 
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Complete Synthetic Scheme 
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1 a   R = CH3, X = H
1 b   R = CH3, X = D
1 c   R = C6H11, X = H
1 d   R = C6H11, X = D
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Reagents and conditions: (a) 2 eq. mol LDA, THF, -78oC to reflux; (b) Me2SO4, DIEA; (c) 
DIBAL-H, CH2Cl2; (d) i) NBS, Me2S, CH2Cl2; ii) (Bu4N)3P2O7H, ACN; iii) ion exchange; 
iv) cellulose, ACN/NH4HCO3 
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Synthetic Procedure: 

(2E) deuterated substrates  

We had recently reported the synthesis and characterization of (2E) deuterated substrates 3a-

d , 5a-d and 7a-d. We followed the same protocol for synthesis in these experiments.1 

 

[2,2-2H]-Trimethylsilylacetic acid [2]. A mixture of sodium acetate-d3 (1.76 g, 20.7 mmol, 

Aldrich), 18-crown-6 ether (2g, 7.6 mmol) in dry ether (100 mL) was refluxed 2h under 

argon. Trimethylsilyl chloride (2.61 mL, 20.7 mmol) was added dropwise and the mixture 

was refluxed for 24h under argon. After cooling, the mixture was filtrated under argon. The 

resulting clear solution was added dropwise to a solution of lithium diisopropylamine at -

78oC [prepared by reaction of n-butyl lithium 1.6 M in hexane (12.94 mL, 20.7 mmol) and 

diisopropylamine (2.90 mL, 20.7 mmol) in ether (40 mL)]. The mixture was stirred for 30 

min at -78oC, warmed to rt and stirring was continued for additional 30 min. The yellow 

solution was then refluxed for 2h. The reaction was quenched by addition of saturated NH4Cl 

at 0oC. The aqueous phase was acidified to pH = 3 with HCl (0.5 M) and the solution was 

extracted with ether (3  50 mL). The combined organic layers were dried (MgSO4) and 

concentrated. Purification by flash chromatography (1:4 (v/v) ether in petroleum ether) gave 

2 (1.16 g, 42 %) as a colorless oil which solidifies at low temperature. 1H NMR (400 MHz, 

CDCl3)  0.17 (s, 9H); 13C NMR (400 MHz, CDCl3)  (CO2H not observed), -1.13; IR (neat) 

cm-1:  2925, 2855, 1733, 1461, 1261, 799; ESI-HRMS calcd. for C4H7D2O2Si [M-CH3
.]+ 

119.0497, found 119.0501. 

General Procedure for the Preparation of Pentadeuterated Ketones. A mixture of 1a,c 

(39.6 mmol) and K2CO3 (0.25 g, previously dried at 80oC for 24h) in D2O (8 mL) was 

vigorously stirred overnight at 70oC under argon. After cooling to rt, the mixture was 

extracted with dry CH2Cl2 (3  10 mL). The combined organic layers were dried (MgSO4) 
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and concentrated. The procedure was repeated 3-5 times with fresh D2O and K2CO3. The 

degree of labeling was monitored by GC-MS (>96 atom % 2H). The pentadeuterated ketone 

was purified by flash chromatography (1:9 (v/v) ether in petroleum ether). 

[1,1,1,3,3-2H5]-6-Methyl-hept-5-en-2-one [1b]. According the general procedure, 

deuteration of 6-methyl-hept-5-en-2-one 1a (5g) gave 1b (4.21 g, 81 %) as a yellow pale oil. 

1H NMR (400 MHz, CDCl3)  5.0-5.04 (m, 1H), 2.20 (d, J = 7.09 Hz, 2H), 1.63 (s, 3H), 1.57 

(s, 3H); 13C NMR (400 MHz, CDCl3)  209.4, 133.0, 122.9, 25.9, 22.7, 17.9; IR (neat) cm-1: 

 2977, 2937, 2554, 1711, 1449, 1380, 1252, 1171, 1042; EI-MS [M+] 131 (4), 113 (85), 95 

(65), 69 (60), 46 (100); ESI-HRMS calcd. for C8H9D5O [M]+. 131.1358 found 131.1360 [21]. 

(5E)-[1,1,1,3,3-2H5]-6,10-Dimethyl-undeca-5,9-dien-2-one [1d]. According the general 

procedure, deuteration of (5E)-6,10-dimethylundeca-5,9-dien-2-one 1c (5g) gave 1d (4.41 g, 

86 %) as a yellow pale oil. 1H NMR (400 MHz, CDCl3)  5.07 (t, J = 7.8 Hz, 2H), 2.25 (d, J 

= 6.8 Hz, 2H), 1.95-2.08 (m, 4H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H); IR (neat) cm-1:  

2969, 2920, 2857, 1712, 1449, 1378, 1252, 1175, 1061; EI-MS [M+] 199 (3), 181 (4), 156 

(28), 136 (39), 121 (15), 93 (21), 82 (9), 69 (78), 53 (17), 46 (100); ESI-HRMS calcd. for 

C8H9D5O [M]+. 199.1984, found 199.1985 [22].  

General Procedure for the Preparation of Methyl Esters. Methyl esters were prepared 

according to the modified method of Arigoni et al. [14]. To a solution of lithium 

diisopropylamine (2.2 eq. mol) in THF (15 mL) at -78oC was added dropwise a solution of 2 

(1.16 g, 8.64 mmol) in THF (15 mL). The mixture was stirred for 30 min at -78oC, 30 min at 

0oC and then cooled to -78oC before dropwise addition of the corresponding ketones 1a-d 

(1.1 eq. mol) in THF (15 mL). The reaction mixture was then stirred 1h at -78oC, 1h at -10oC 

and 1h at rt. The reaction mixture was quenched by dropwise addition of HCl (0.1 N) at 0oC. 

THF was removed under reduced pressure and the residue was dissolved in hexane (30 mL). 

The solution was poured into 100 mL of an hexane:HCl (0.5 N) (3:1) mixture and the 
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aqueous phase was extracted with hexane (3  40 mL). The combined organic layers were 

washed with brine, dried (MgSO4) and concentrated. Purification by flash chromatography 

(1:4 (v/v) ether in petroleum ether) gave an isomeric mixture of corresponding carboxylic 

acids. The mixture of E/Z carboxylic acids was dissolved in ACN (20 mL) at 0oC and freshly 

distilled diisopropylamine (1.1 eq. mol) was added dropwise. The mixture was stirred 10 at 

0oC, 20 min at rt and then cooled to 0oC before dropwise addition of freshly distilled 

dimethyl sulfate (2 eq. mol). The reaction mixture was stirred for 3h at rt. The mixture was 

quenched by dropwise addition of NH4OH (0.1N) and the solvent was removed under 

reduced pressure. The residue was taken up in Et2O (10 mL), poured into an ether:water (3:1) 

mixture (80 mL) and the aqueous phase was extracted with ether (3  30 mL). The combined 

organic layers were washed with brine, dried (MgSO4) and concentrated. Silica gel column 

chromatography (1:9 (v/v) ether in petroleum ether) gave isomerically pure methyl esters.  

Methyl (2E)-[2-2H1]-3,7-Dimethylocta-2,6-dienoate [3a] and Methyl (2Z)-[2-2H1]-3,7-

Dimethylocta-2,6-dienoate [4a]. According the general procedure, condensation of 1a (1.14 

g) and 2 (1.10 g), esterification of the mixture of E/Z carboxylic acids and subsequent 

purification by flash chromatography gave 4a (0.20 g) as a colorless oil followed by 3a (0.31 

g) as a colorless oil (total yield 35 % from 2, Z/E 4:6). IR (neat, mixture of E- and Z- isomers) 

cm-1:  2962, 1261, 1094, 1021, 866, 800. 

Data for 4a: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 3.68 (s, 3H), 2.64 (t, J = 8.25 

Hz, 2H), 1.69 (q, J = 7.52 Hz, 2H), 1.90 (s, 3H); 1.69 (s br, 3H), 1.63 (s br, 3H); 13C NMR 

(400 MHz, CDCl3)  167.1, 160.8, 132.6, 124.5, 51.1, 33.8, 27.2, 26.0, 25.6, 18.0; EI-MS 

[M]+ 183 (6), 152 (16), 124 (35), 115 (55), 84 (36), 69 (100), 41 (37); ESI-HRMS calcd. for 

C11H17DO2 [M]+ 183.1369, found 183.1360.  

Data for 3a: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 1H), 3.69 (s, 3H), 2.17 (s, 7H), 1.69 

(s, 3H), 1.61 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.6, 160.4, 132.9, 123.4, 51.1, 41.2, 
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26.4, 26.0, 19.2, 18.1; EI-MS [M]+ 183 (15), 152 (19), 124 (47), 115 (87), 84 (59), 69 (100), 

41 (57); ESI-HRMS calcd. for C11H17DO2 [M]+ 183.1369, found 183.1362.  

Methyl (2E)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate [3b] and Methyl (2Z)-

[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienoate [4b]. According the general procedure, 

condensation of 1b (1.25 g) and 2 (1.16 g), esterification of the mixture of E/Z carboxylic 

acids and subsequent purification by flash chromatography gave 4b (0.24 g) as a colorless oil 

followed by 3b (0.37 g) as a colorless oil (total yield 38 % from 2, Z/E 4:6). IR (neat, mixture 

of E- and Z- isomers) cm-1:  2964, 2918, 1719, 1629, 1435, 1230, 1102, 1041, 792. 

Data for 4b: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 3.68 (s, 3H), 2.15 (d, J = 7.30 

Hz, 2H), 1.69 (s, 3H), 1.63 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.1, 160.5, 132.5, 

124.1, 51.1, 27.0, 26.0, 18.0; EI-MS [M]+ 188 (10), 156 (16), 128 (38), 119 (41), 88 (36), 69 

(100), 41 (47); ESI-HRMS calcd. for C11H12D6O2 [M]+ 188.1683, found 188.1691.  

Data for 3b: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 1H), 3.69 (s, 3H), 2.15 (d, J = 6.83 

Hz, 2H), 1.69 (s, 3H), 1.61 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.6, 160.2, 132.9, 

123.4, 51.1, 26.3, 26.0, 18.0; EI-MS [M]+ 188 (7), 156 (13), 128 (27), 119 (50), 88 (26), 69 

(100), 41 (38); ESI-HRMS calcd. for C11H12D6O2 [M]+ 183.1683, found 188.1692.  

Methyl (2E,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trienoate [3c] and Methyl 

(2Z,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trienoate [4c]. According the general 

procedure, condensation of 1c (1.62 g) and 2 (1.02 g), esterification of the mixture of E/Z 

carboxylic acids and subsequent purification by flash chromatography gave 4c (0.25 g) as a 

colorless oil followed by 3c (0.41 g) as a colorless oil (total yield 35 % from 2, Z/E 4:6). IR 

(neat, mixture of E- and Z- isomers) cm-1:  2968, 2917, 1719, 1638, 1438, 1378, 1241, 1148, 

1069, 928, 792. 

Data for 4c: 1H NMR (400 MHz, CDCl3)  5.14-5.18 (m, 1H), 5.06-5.10 (m, 1H), 3.66 (s, 

3H), 2.65 (t, J = 7.79 Hz, 2H), 2.17 (q, J = 7.64 Hz, 2H), 2.03-2.08 (m, 2H), 1.95-1.99 (m, 
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2H), 1.88 (s, 3H), 1.67 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H); 13C NMR (400 MHz, CDCl3)  

167.0, 160.6, 136.1, 131.5, 124.7, 123.9, 50.9, 40.0, 33.7, 27.1, 27.0, 26.0, 25.5, 17.9, 16.2; 

EI-MS [M]+ 251 (8), 208 (21), 136 (32), 115 (55), 81 (51), 69 (100), 41 (52); ESI-HRMS 

calcd. for C16H25DO2 [M]+ 251.1995, found 251.1999. 

Data for 3c: 1H NMR (400 MHz, CDCl3)  5.07-5.10 (m, 2H), 3.69 (s, 3H), 2.17 (s br, 7H), 

1.97-2.10 (m, 4H), 1.69 (s, 3H), 1.61 (s br, 6H); 13C NMR (400 MHz, CDCl3)  167.6, 160.3, 

136.6, 131.7, 124.6, 123.3, 51.0, 41.3, 40.0, 27.1, 26.4, 26.0, 19.2, 18.0, 16.3; EI-MS [M]+ 

251 (25), 208 (56), 150 (57), 115 (60), 81 (57), 69 (100), 41 (67); ESI-HRMS calcd. for 

C16H25DO2 [M]+ 251.1995, found 251.2000. 

Methyl (2E,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate [3d] and 

Methyl (2Z,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienoate [4d]. 

According the general procedure, condensation of 1d (1.78 g) and 2 (1.09 g), esterification of 

the mixture of E/Z carboxylic acids and subsequent purification by flash chromatography 

gave 4d (0.24 g) as a colorless oil followed by 3d (0.41 g) as a colorless oil (total yield 31 % 

from 2, Z/E 4:6). IR (neat, mixture of E- and Z- isomers) cm-1:  2967, 2919, 1719, 1629, 

1435, 1379, 1226, 1114, 1052. 

Data for 4d: 1H NMR (400 MHz, CDCl3)  5.15-5.19 (m, 1H), 5.07-5.11 (m, 1H), 3.67 (s, 

3H), 2.16 (d, J = 7.15 Hz, 2H), 2.03-2.08 (m, 2H), 1.96-1.99 (m, 2H), 1.68 (s, 3H), 1.62 (s, 

3H), 1.60 (s, 3H); 13C NMR (400 MHz, CDCl3)  167.1, 160.7, 136.1, 131.6, 124.7, 123.8, 

51.1, 40.0, 27.1, 26.8, 26.0, 18.0, 16.3; EI-MS [M]+ 256 (3), 213 (5), 119 (30), 81 (24), 69 

(100), 41 (34); ESI-HRMS calcd. for C16H20D6O2 [M]+ 256.2309, found 256.2304.  

Data for 3d: 1H NMR (400 MHz, CDCl3)  (5.07-5.10, m, 2H), 3.69 (s, 3H), 2.16 (d, J = 6.61 

Hz, 2H), 1.96-2.09 (m, 4H), 1.68 (s, 3H), 1.60 (s, 6H); 13C NMR (400 MHz, CDCl3)  167.6, 

160.3, 136.5, 131.8, 124.6, 123.2, 51.1, 40.0, 27.0, 26.2, 26.0, 18.0, 16.4; EI-MS [M]+ 256 
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(7), 213 (15), 155 (9), 119 (29), 81 (33), 69 (100), 41 (46); ESI-HRMS calcd. for C16H20D6O2 

[M]+ 256.2309, found 256.2302. 

General Procedure for the Preparation of Geraniols and Farnesols. Geraniols and 

farnesols were prepared according to the modified method of Arigoni et al. [14]. To a 

solution of methyl ester 4a-d (0.87 mmol) in CH2Cl2 (20 mL) at -78oC under argon was 

added dropwise diisobutylaluminium hydride (1M in hexane, 2 eq. mol). Stirring was 

continued at -78oC for 5h before addition of water (0.4 mL), NaOH (1N, 0.4 mL) and water 

(1.2 mL). The mixture is loaded to a column filled with Na2SO4 and eluted with MeOH (2 

volumes column). The solution is concentrated and purified by flash chromatography (1:4 

(v/v) ether in petroleum ether) to give the corresponding alcohol 6a-d. 

 (2Z)-[2-2H1]-3,7-Dimethylocta-2,6-dien-1-ol [6a]. According the general procedure, 

reduction of 4a (0.164 g) gave 6a (0.126 g, 91 %) as a colorless oil. 1H NMR (400 MHz, 

CDCl3)  5.10-5.14 (m, 1H), 4.10 (s, 2H), 2.10-2.12 (m, 4H), 1.76 (s, 3H), 1.70 (s, 3H), 1.62 

(s, 3H); 13C NMR (400 MHz, CDCl3)  140.3, 132.8, 124.2, 59.4, 32.4, 27.0, 26.0, 23.7, 18.0; 

ESI-HRMS calcd. for C10H15D [M-H2O]+. 137.1314, found 137.1306. 

(2Z)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dien-1-ol [6b]. According the general 

procedure, reduction of 4b (0.166 g) gave 6b (0.121 g, 86 %) as a colorless oil. 1H NMR (400 

MHz, CDCl3)  5.11-5.12 (m, 1H), 4.10 (s, 2H), 2.07 (d, J = 7.07 Hz, 2H), 1.70 (s, 3H), 1.62 

(s, 3H); 13C NMR (400 MHz, CDCl3)  140.1, 132.7, 124.2, 59.3, 26.8, 26.0, 18.0.  

 (2Z,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol [6c]. According the general 

procedure, reduction of 4c (0.192 g) gave 6c (0.160 g, 94 %) as a colorless oil. 1H NMR (400 

MHz, CDCl3)  5.08-5.12 (m, 2H), 4.09 (s, 2H), 1.95-2.10 (m, 8H), 1.74 (s, 3H), 1.67 (s, 

3H), 1.59 (s br, 6H); 13C NMR (400 MHz, CDCl3)  140.0, 136.2, 131.7, 124.5, 123.9, 59.2, 

40.0, 32.2, 27.0, 26.8, 26.0, 23.7, 18.0, 16.3.  
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 (2Z,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol [6d]. According 

the general procedure, reduction of 4d (0.155 g) gave 6d (0.125 g, 91 %) as a colorless oil. 

1H NMR (400 MHz, CDCl3)  5.07-5.13 (m, 2H), 4.10 (s, 2H), 1.96-2.09 (m, 6H), 1.68 (s, 

3H), 1.60 (s, 6H); 13C NMR (400 MHz, CDCl3)  140.1, 136.3, 131.8, 124.6, 123.9, 59.3, 

40.0, 27.0, 26.7, 26.0, 18.0, 16.3.  

General Procedure for the Preparation of Trisammonium Diphosphates. Trisammonium 

diphosphates were prepared according to the modified method of Woodside et al. [15]. To a 

solution of N-chlorosuccinimide (11.39 mmol) in CH2Cl2 (45 mL) at -30oC under argon was 

added dropwise freshly distilled dimethyl sulfide (1.1 eq. mol). The mixture was warmed to 

0oC, stirred at this temperature for 10 min and cooled to -40oC. A solution of alcohol 6a-d (1 

eq. mol) in CH2Cl2 (5 mL) was slowly added before the reaction mixture was warmed to 0oC. 

Stirring was continued for 2h at 0oC and 15 min at rt. The clear solution was then washed 

with cold saturated NaCl (25 mL). The aqueous phase was extracted with pentane (2  20 

mL). The combined organic layers were washed with cold saturated NaCl (20 mL), dried 

(MgSO4), concentrated under reduced pressure (no water bath) and completely removed 

under high vacuum for 2h. Corresponding alkyl chlorides were used without further 

purification. Freshly prepared tris(tetrabutylammonium) hydrogen pyrophosphate (according 

the method of Woodside et al. [16]) (1.2 eq. mol) was dissolved in ACN (5 mL) at rt under 

argon before dropwise addition of alkyl chloride in ACN (2 mL). Stirring was continued at rt 

overnight. The mixture was concentrated under reduced pressure. The residue was dissolved 

in (NH4)2CO3 (3 mL) (0.25 mM, 2 % isopropyl alcohol), loaded onto a 2  30 cm column of 

Dowex 50WX8-200 (NH4
+ form) before elution of two volumes column of (NH4)2CO3 (0.25 

mM, 2 % isopropyl alcohol). The eluent was lyophilized and the resulting white powder was 

purified by chromatography on cellulose (1:9 (v/v) water in ACN). Fractions were monitored 

by TLC (silica gel, iPr-OH-water-AcOEt 6:3:1) and those containing trisammonium 
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diphosphate were combined. Solvents were removed under reduced pressure and the resulting 

solution was lyophilized to afford 8a-d. 

Trisammonium (2Z)-[2-2H1]-3,7-Dimethylocta-2,6-dienyl Diphosphate [8a]. According 

the general procedure, phosphorylation of 6a (0.126 g) gave 8a (0.187 g, 63 % from 6a) as a 

flocculent white solid. mp: 158-159oC. 1H NMR (400 MHz, D2O/ND4OD)  5.36-5.38 (m, 

1H), 4.63 (d, J = 6.24 Hz, 2H), 2.30-2.37 (m, 4H), 1.94 (s, 3H), 1.87 (s, 3H), 1.81 (s, 3H); 13C 

NMR (400 MHz, D2O/ND4OD)  145.1, 136.6, 126.8, 64.9 (d, J = 5.14 Hz), 34.1, 28.9, 27.7, 

25.4, 19.8; 31P NMR (400 MHz, D2O/ND4OD)  - 5.60 (d, J = 21.73 Hz, 1 P), - 9.61 (d, 

J31P,31P = 23.71 Hz, 1 P); IR (ZnS, microscope) cm-1:  3172-2860 (br), 2350, 1860, 1687, 

1441, 1203, 1080, 911; ESI-HRMS calcd. for C10H18DO7P2 [M-H]- 314.0669, found 

314.0689. 

Trisammonium (2Z)-[2,4,4,9,9,9-2H6]-3,7-Dimethylocta-2,6-dienyl Diphosphate [8b]. 

According the general procedure, phosphorylation of 6b (0.121 g) gave 8b (0.196 g, 70 % 

from 6b) as a flocculent white solid. mp: 157-161oC. 1H NMR (400 MHz, D2O/ND4OD)  

5.36-5.39 (m, 1H), 4.60 (under D2O pick, s br, 2H), 2.29 (d, J = 6.97 Hz, 2H), 1.87 (s, 3H), 

1.80 (s, 3H); 13C NMR (400 MHz, D2O/ND4OD)  143.8.1, 136.5, 127.1, 65.0 (d, J = 5.14 

Hz), 29.0, 28.0, 20.1; 31P NMR (400 MHz, D2O/ND4OD)  - 5.63 (d, J = 53.64 Hz, 1 P), - 

9.61 (d, J31P,31P = 53.64 Hz, 1 P); IR (ZnS, microscope) cm-1:  3185-2854 (br), 2196, 1892, 

1649, 1445, 1204, 1087, 916; ESI-HRMS calcd. for C10H13D6O7P2 [M-H]- 319.0983, found 

319.0979. 

Trisammonium (2Z,6E)-[2-2H1]-3,7,11-Trimethyldodeca-2,6,10-trienyl Diphosphate 

[8c]. According the general procedure, phosphorylation of 6c (0.160 g) gave 8c (0.255 g, 82 

% from 6c) as a flocculent white solid. mp: 184-186oC. 1H NMR (400 MHz, D2O/ND4OD)  

5.45-5.51 (m, 2H), 4.74 (d, J = 6.24 Hz, 2H), 2.37-2.46 (m, 6H), 2.29-2.33 (m, 2H), 2.06 (s, 

3H), 1.97 (s, 3H), 1.91 (s, 6H); 13C NMR (400 MHz, D2O/ND4OD)  145.2, 139.5, 136.1, 
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127.3, 127.0, 64.9 (d, J = 5.14 Hz), 41.7, 34.1, 29.0, 28.7, 27.7, 25.5, 19.8, 18.1; 31P NMR 

(400 MHz, D2O/ND4OD)  -5.62 (d, J = 15.8 Hz, 1 P), -9.61 (d, J31P,31P = 17.76 Hz, 1 P); IR 

(ZnS, microscope) cm-1:  3199-2826 (br), 2330, 1914, 1658, 1448, 1205, 1088, 1021, 921; 

ESI-HRMS calcd. for C15H26DO7P2 [M-H]- 382.1295, found 382.1252. 

Trisammonium(2Z,6E)-[2,4,4,13,13,13-2H6]-3,7,11-Trimethyldodeca-2,6,10-trienyl 

Diphosphate [8d]. According the general procedure, phosphorylation of 6d (0.125 g) gave 

8d (0.135 g, 56 % from 6d) as a flocculent white solid. mp: 186-188oC. 1H NMR (400 MHz, 

D2O/ND4OD)  5.32-5.38 (m, 2H), 4.61 (d, J = 5.97 Hz, 2H), 2.26-2.28 (m, 4H), 2.18-2.20 

(m, 2H), 1.84 (s, 3H), 1.78 (s, 6H); 13C NMR (400 MHz, D2O/ND4OD)  145.2, 139.7, 136.3, 

127.4, 127.1, 65.0 (d, J = 4.59 Hz), 41.9, 27.0, 28.8, 27.9, 20.0, 18.3; 31P NMR (400 MHz, 

D2O/ND4OD)  -6.71 (d, J = 15.80 Hz, 1 P), -9.78 (d, J31P,31P = 11.85 Hz, 1 P); IR (ZnS, 

microscope) cm-1:  3192-2861 (br), 2332, 2200, 1651, 1446, 1206, 1092, 917; ESI-HRMS 

calcd. for C15H21D6O7P2 [M-H]- 387.1609, found 387.1656. 

Heterologous expression of terpene synthases. The open reading frames of tps4-B73 and 

tps5-Del1 were cloned as EcoRI-NotI fragments and inserted into the bacterial expression 

vector pHis8-3 which provided the expressed proteins with a His-tag at the N-terminal [23]. 

The constructs were transformed into the Escherichia coli strain BL21 (DE3) and fully 

sequenced to avoid errors introduced by DNA amplification. The recombinant proteins TPS4 

and TPS5 were purified from E. coli as previously described [9]. 

Assay for terpene synthase activity. Each 200 μL assay contained 50 μL of the bacterial 

extract in assay buffer (10 mM 3-(N)-2-hydroxypropane sulfonic acid (Mopso), pH 7.0, 1 

mM DTT, and 10 % (v/v) glycerol) with 350 μM substrate, 7.5 mM MgCl2, 1.5 mM NaWO4, 

and 0.75 mM NaF in a 2 ml screw-capped glass vial. The assay was overlaid with 100 μL 

pentane containing 2.5 μM (E)- -caryophyllene (Aldrich, 98 % pure) as an internal standard 

and incubated for 20 min at 30oC. The reaction was stopped by mixing for 1 min, and an 
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aliquot of the pentane layer was analyzed by GC-FID. Assay results are reported as the mean 

of three to six independent replicate assays. Product identification was performed by GC-MS 

as previously described.2 

Gas chromatography for terpene synthase activity. A Hewlett-Packard model 6890 gas 

chromatograph was employed with the carrier gas He at 1 ml min-1, splittless injection 

(injector temperature: 220oC, injection volume: 2 μL), a DB-WAX column (polyethylene 

glycol, 30 m  0.25 mm ID  0.25 μm film thickness, J&W Scientific, Folsom, CA, USA) for 

sesquiterpenes and a DB5-MS column (30 m  0.25 mm ID  0.25 μm film thickness, J & W 

Scientific) for monoterpenes, respectively. Temperature was programmed from 50oC (3 min 

hold) at 7oC min-1 to 240oC (2 min hold). Quantification was performed with the trace of a 

flame ionization detector (FID) operated at 250oC. Peaks were compared with that of the 

internal standard assuming equal response factors.  
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Experimental Section 

General Methods. Reactions were performed under Ar. Solvents were dried according to 

standard procedures. 1H, 13C and 31P NMR: Bruker AV 400 spectrometer (Bruker, D-76287 

Rheinstetten/Karlsruhe, Germany). Chemical shifts of 1H, 13C and 31P NMR are given in ppm 

( ) based on solvent peaks. CDCl3: 7.27 (1H NMR) and 77.4 ppm (13C NMR). D2O/ND4OD: 

4.79 (1H NMR); 13C NMR and 31P NMR were referenced to external standard 3-

(trimethylsilyl)-propionic acid-d4 sodium salt (TSP; 3 % in D2O) and phosphoric acid 

(H3PO4, 10 % in D2O), respectively. IR: Bruker Equinox 55 FTIR spectrophotometer. GC-

MS: Trace MS, 2000 Series (Thermoquest, D-63329 Egelsbach, Germany) equipped with an 

Alltech DB5 (15 m  0.25 mm, 0.25 m); helium served as carrier gas. Molecular 

composition of prepared compounds were determined by ESI-MS using a Micromass Quattro 

II (Waters, Micromass, Manchester, UK) tandem quadrupole mass spectrometer (geometry 

quadrupole-hexapole-quadrupole) equipped with an electrospray (ESI) source. High 

resolution ESI-MS (HR-EI-MS) were recorded at resolution ca 2500. High-resolution MS 

(EI) data were obtained using a MasSpec 2 instrument (Micromass, UK) in positive ion mode 

using 70 eV ionization energy. GC-HR-MS: Analyses were performed with a Hewlett 

Packard HP6890 gas chromatograph interfaced to a MasSpec 2. Separation was achieved on a 

J & W Scientific DB-5 capillary column, 30 m × 0.25 mm, 0.25 μm film thickness using 

helium (30 mL s-1) as carrier gas. Melting point: Büchi B-540 (Büchi Labortechnik AG, CH-

9230 Flawil, Switzerland). Chromatography: Silica gel Si 60 (0.200-0.063 mm, E. Merck, 

Darmstadt, Germany); cellulose microcrystalline Avicel (E. Merck, Darmstadt, Germany). 
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Heterologous expression of terpene synthases.  
 
Strains of E. coli (BL21-CodonPlus(DE3)) harboring the recombinant vectors of 

MtTPS51  carrying an N-terminal His8-tag were grown to A600 = 0.5 at 37 °C in LB-medium 

with kanamycin at 50 g mL 1. After induction with isopropyl -d-1-thiogalactopyranoside 

(IPTG, final concentration 1 mM), cultures were shaken overnight at 16 °C and 200 rpm. 

Cells were harvested by centrifugation for 20 min at 4000 rpm, and the pellet was 

resuspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and 

incubated with lysozyme (1 mg mL 1) for 1 h at 4 °C. Disruption of the cells was achieved by 

sonication for 2 × 2 min. The cell debris was removed by centrifugation at 10000g for 30 

min. The supernatant was passed over a column of Ni2+-NTA-Agarose (QIAGEN, Hilden, 

Germany), equilibrated with eight bed volumes of lysis buffer. After being washed twice with 

four bed volumes of washing buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 

8.0), the protein was eluted with elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM 

imidazole, pH 8.0). The purified protein was desalted into a TRIS-buffer (50 mM TRIS, pH 

7.5, 10 mM NaCl, 10% glycerol) by passing through a NAP 25 column (Amersham 

Biosciences, Uppsala, Sweden), diluted to reach a concentration of 1 mg mL 1 and stored at 

20 °C. Protein quantification was performed by using a method of Bradford et al.2 

Identification of Enzyme Products 
GC MS analysis was performed on an instrument equipped with a ZB-5 capillary column 

(0.25 mm i.d. × 15 m with 0.25 m film). One microliter of the sample was injected in 

splitless mode at an injection port temperature of 220 °C. The oven temperature was kept at 

50 °C for 2 min followed by a ramp of 10 °C min 1 to 240 °C followed by an additional ramp 

of 30 °C min 1 to 280 °C and finally kept for 2 min. Helium at a flow rate of 1.5 mL 

min 1 served as carrier gas. Ionization potential was set to 70 eV, and scanning was 

performed from 40 to 250 amu. Compounds were identified by comparing their mass spectra 
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and Kováts indices (retention indices) with those of published reference spectra in 

MassFinders’ (software version 3.5) and Adams' terpene library and in the NIST database. In 

addition, retention indices (RI) of sesquiterpene peaks derived by calibrating GC runs with a 

C8 C20 alkane standard were compared with RI values of authentic reference compounds. 

Essential oils with known composition containing relevant sesquiterpenoids were purchased 

from a commercial supplier or were generously provided by Stefan von Reuss.  

Quantification of products 
 
For quantification of enzyme products, the compounds were first separated by gas 

chromatography (H2 carrier gas 1.5 mL min 1, injection volume 2 L) under the conditions 

described above and subsequently analyzed on a flame ionization detector (FID) (250°C). 

Correction of the different response factors of sesquiterpene hydrocarbons and alcohols was 

achieved using calibration curves obtained from samples with different concentrations of (E)-

-caryophyllene and torreyol. The average and standard deviations of relative ratios were 

determined by at least four independent samples setting the sum of identified compounds to 

100%. 

Determination of the Stereochemistry of the Enzyme Products 
 
The enantiomers of the enzymatic products were separated and identified by GC MS using a 

heptakis(2,3-di-O-methyl-O-tert-butyldimethylsilyl)- -cyclodextrin column (50% in 

OV1701, w/w) (FS-Hydrodex -6TBDM) (0.25 mm i.d. × 25 m × 0.25 m film) operated 

with helium at 1 mL min 1 as carrier gas, a splitless injection of 1 L sample at 220 °C and a 

temperature program starting from 60 °C kept for 5 min, followed by a ramp of 2 °C 

min 1 (for -copaene (8) 1 °C min 1) to 160 °C followed by an additional ramp of 30 °C 

min 1 to 220 °C with 2 min hold. The separation of torreyl enantiomers was achieved by 

using a heptakis(2,3,6-tri-O-methyl)- -cyclodextrin column (50% in OV1701, w/w) (FS-
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Hydrodex -PM) (0.25 mm i.d. × 25 m × 0.25 m film). Helium was used as carrier gas at a 

constant flow rate of 1 mL min 1, and samples (1 L) were injected at 220 °C. The GC was 

programmed with an initial oven temperature of 110 °C (15-min hold), which was then 

increased 2 °C min 1 up to 160 °C followed by a 30 °C min 1ramp until 220 °C (2-min hold). 

Enzyme Assays for Product Analysis 
 
Standard assays contained 600 nM purified protein in assay buffer (25 mM HEPES, pH 7.5, 

10% glycerol, 10 mM MgCl2, 1 mM DTT) with 50 M substrate (FDP, (1S)-[1-2H]-FDP, 

(1R)-[1-2H]-FDP, or [1,1-2H2]-FDP) in a final volume of 1 mL. Deuterated FDPs were 

synthesized as previously described.3 The reaction mixture was covered with 100 L of 

pentane containing 1 ng L 1 of dodecane as an internal standard to trap the reaction 

products. After being incubated for 90 min at 30 °C, the reaction was stopped by vortexing 

for 20 s. The whole mixture was frozen in liquid nitrogen, and the pentane layer was removed 

after thawing and analyzed by GC MS as described above. 

To analyze the protonation reaction, 50 L of the purified enzyme (1 mg mL 1) was 

lyophilized and redissolved in 50 L of D2O and incubated for 30 min on ice to ensure proper 

H D exchange of the enzyme. An aliquot of 20 L of the protein sample was analyzed in 

assay buffer prepared with D2O (>99% d1) containing 50 M FDP. The assays were 

incubated for 1 h at 30 °C. The reaction products were collected by a solid-phase 

microextration fiber (SPME) consisting of 100 m polydimethylsiloxane and analyzed by 

GC MS. The labeling degree of each product was calculated from the intensities of the 

respective [M]+, [M + 1]+ for hydrocarbons and [M  H2O]+, [M  H2O+1]+ for alcohols after 

correcting for the abundance of their 13C satellite peaks. 

 

 



S-7 
 

Preparative Assays 
 
For identifying and determining the stereochemistry of copan-3-ol (25) and cubebol (21), two 

10-mL assays containing 600 nM purified enzyme in assay buffer with 50 M FDP were 

covered with 10 mL of pentane. After being incubated overnight at 30 °C, the mixture was 

extracted three times with 5 mL of pentane. The combined organic phases were passed 

through a Pasteur pipet containing Na2SO4, and the volume was reduced to 100 L. 

Alcohols were separated on silica (1 g, Pasteur pipet) using pentane/ether (6:1, v/v) for 

elution. Two fractions highly enriched in the desired compounds were obtained, besides 

fractions containing both compounds. 
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MtTPS5 Product Identification 

Retention indices 

Tabelle A-1. Retention indices of enzyme products, which were formed in the presence of 
various substrates of MtTPS5 compared with authentic references. The origin of the reference 
substances is also indicated. 

 

  Retentionsindex   

Enzyme product WT Reference Source of 
Reference 

(2Z,6E)-Produkte 

-Ylangen (15) 1371 1370 Givaudan 

-Himachalene (16) 1447 1448 SU 

Isobicyclogermacrene (17) 1476 --- n. r. 

-Amorphene (18) 1479 1480 SU 

-Humulen (19) 1486 1485 Fluka 

-Himachalen (20) 1487 1487 Givaudan 

-Himachalen (21) 1500 1500 SU 

-Amorphen (23) 1507 1507 (b)4 

C15H26O - II (22) 1515 --- n. r. 

C15H26O - III (24) 1571 --- n. r. 

Humulan-6,9-dien-3-ol (25) 1576 --- n. r. 

C15H26O - IV (26) 1632 --- n. r. 

2-Himachalen-7-ol (27) 1648 1646 Givaudan 

SU: Scapania undulata5 (Stefan von Reuß, Universität Hamburg); (a): Stefan von Reuß 

(Universität Hamburg); (b): acid-catalyzed rearrangement of Germacren D (34); n. r.: no 

reference available 
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Stereochemical Analysis 

Tabelle A-2. Gas chromatographic separation factors ( -values) and resolution (R-values), 

origin of the references, and the elution and the separation conditions of the determination of 

the absolute configuration of MtTPS1- and MtTPS5 products. 

Enzyme product -value R-value Origin of 
Reference 

Elution, 
separation 
conditions 

(2Z,6E)-Produkte 

(+)- -Ylangen (15) 1,0103 2,058 EZ + (-)-15a 6, (e) 

(-)- -Himachalen (16) 1,0266 5,939 SU + (-)-16b (d), (e) 

(-)- -Amorphen (18) 1,0365 9,996 EZ + (-)-18b 6, (e) 

(-)- -Himachalen (20) 1,0169 3,998 SU + (-)-20b (d), (e) 

(+)- -Amorphen (23) 1,0205 5,509 (±)-34 
rearrangement 4 

6, (e) 

 
PQ: Preissia quadrata Pentane extract; MA: Meum athamanticum; SU: Scarpania undulata5; 
EE: MtTPS5 incubated with (2E,6E)-FDP (Pentane extract); EZ: MtTPS5 incubated with 
(2Z,6E)-FDP (Pentaneextrakt); (a): Stefan von Reuß (Universität Hamburg); (b): Preissia 
quadrata contains (+)-Isomer; (c): Cortinarius odorifer Britz contains (+)-73; (d) Scapania 
undulata contains (+)-Enantiomer;7 (e): Method I; (f): Method II; (g): Methode III (Methods: 
see experimental section). aStefan von Reuß (Universität Hamburg), bGivaudan SA, Schweiz 
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Illustration A-1. Identification of the absolute configuration of the products 
of with MtTPS5 with (2Z,6E) -FDP were obtained. Reference: Reference includes 
both enantiomers. 
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-Amorphen (23) 
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Mass spectra 

. The compounds are ordered by 
increasing retention index. 
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-Humulen (19) (RI = 1486) 

 

-Himachalen (20) (RI = 1486) 

 

40 60 80 100 120 140 160 180 200 220

105

161

94
204

119

81 133
189147

55 69 175

re
la

tiv
e 

In
te

ns
itä

t

50

100

m/z

40 60 80 100 120 140 160 180 200 220

93
133

105 204161
11979

189147
55 67

175

re
la

tiv
e 

In
te

ns
itä

t

50

100

m/z

40 60 80 100 120 140 160 180 200 220

93 133
105 204

119

161
79 189

148
55

67
175

re
la

tiv
e 

in
te

ns
itä

t

50

100

m/z



S-14 
 

-Himachalen (21) (RI = 1500) 

 

 

-Amorphen (23) (RI = 1507) 

 

 

C15H26O - II (22) (RI = 1515) 
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C15H26O - III (24) (RI = 1571) 

 

Humulan-6,9-dien-3-ol (25) (RI = 1576) 

 

 

C15H26O - IV (26) (RI = 1632) 
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2-Himachalen-7-ol (27) (RI = 1648) 

 

Substrates 

Synthesis of (2Z,6E)-Farnesyldiphosphate 
 
(2Z,6E)-FPP was synthesized from (2E,6E)-farnesol as described by Shao et al.8 

Mass spectra 

(2Z,6E)-Farnesol  
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NMR Spectra 

(2Z,6E)-Farnesol 
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(2Z,6E)-Farnesyldiphosphate  
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